Commit Graph

4 Commits

Author SHA1 Message Date
River Riddle 92f1562f3d [mlir][NFC] Remove the STLExtras.h header file now that it has been merged into LLVM.
Now that no more utilities exist within, this file can be deleted.

Differential Revision: https://reviews.llvm.org/D78079
2020-04-14 15:14:41 -07:00
River Riddle 2f21a57966 [llvm][STLExtras] Move the algorithm `interleave*` methods from MLIR to LLVM
These have proved incredibly useful for interleaving values between a range w.r.t to streams. After this revision, the mlir/Support/STLExtras.h is empty. A followup revision will remove it from the tree.

Differential Revision: https://reviews.llvm.org/D78067
2020-04-14 15:14:40 -07:00
River Riddle 2e8188ff48 [mlir][NFC] Mark a debug only variable as (void) to avoid unused warning 2020-04-13 00:48:17 -07:00
Nicolas Vasilache 882ba48474 [mlir][Linalg] Create a tool to generate named Linalg ops from a Tensor Comprehensions-like specification.
Summary:

This revision adds a tool that generates the ODS and C++ implementation for "named" Linalg ops according to the [RFC discussion](https://llvm.discourse.group/t/rfc-declarative-named-ops-in-the-linalg-dialect/745).

While the mechanisms and language aspects are by no means set in stone, this revision allows connecting the pieces end-to-end from a mathematical-like specification.

Some implementation details and short-term decisions taken for the purpose of bootstrapping and that are not set in stone include:

    1. using a "[Tensor Comprehension](https://arxiv.org/abs/1802.04730)-inspired" syntax
    2. implicit and eager discovery of dims and symbols when parsing
    3. using EDSC ops to specify the computation (e.g. std_addf, std_mul_f, ...)

A followup revision will connect this tool to tablegen mechanisms and allow the emission of named Linalg ops that automatically lower to various loop forms and run end to end.

For the following "Tensor Comprehension-inspired" string:

```
    def batch_matmul(A: f32(Batch, M, K), B: f32(K, N)) -> (C: f32(Batch, M, N)) {
      C(b, m, n) = std_addf<k>(std_mulf(A(b, m, k), B(k, n)));
    }
```

With -gen-ods-decl=1, this emits (modulo formatting):

```
      def batch_matmulOp : LinalgNamedStructured_Op<"batch_matmul", [
        NInputs<2>,
        NOutputs<1>,
        NamedStructuredOpTraits]> {
          let arguments = (ins Variadic<LinalgOperand>:$views);
          let results = (outs Variadic<AnyRankedTensor>:$output_tensors);
          let extraClassDeclaration = [{
            llvm::Optional<SmallVector<StringRef, 8>> referenceIterators();
            llvm::Optional<SmallVector<AffineMap, 8>> referenceIndexingMaps();
            void regionBuilder(ArrayRef<BlockArgument> args);
          }];
          let hasFolder = 1;
      }
```

With -gen-ods-impl, this emits (modulo formatting):

```
      llvm::Optional<SmallVector<StringRef, 8>> batch_matmul::referenceIterators() {
          return SmallVector<StringRef, 8>{ getParallelIteratorTypeName(),
                                            getParallelIteratorTypeName(),
                                            getParallelIteratorTypeName(),
                                            getReductionIteratorTypeName() };
      }
      llvm::Optional<SmallVector<AffineMap, 8>> batch_matmul::referenceIndexingMaps()
      {
        MLIRContext *context = getContext();
        AffineExpr d0, d1, d2, d3;
        bindDims(context, d0, d1, d2, d3);
        return SmallVector<AffineMap, 8>{
            AffineMap::get(4, 0, {d0, d1, d3}),
            AffineMap::get(4, 0, {d3, d2}),
            AffineMap::get(4, 0, {d0, d1, d2}) };
      }
      void batch_matmul::regionBuilder(ArrayRef<BlockArgument> args) {
        using namespace edsc;
        using namespace intrinsics;
        ValueHandle _0(args[0]), _1(args[1]), _2(args[2]);

        ValueHandle _4 = std_mulf(_0, _1);
        ValueHandle _5 = std_addf(_2, _4);
        (linalg_yield(ValueRange{ _5 }));
      }
```

Differential Revision: https://reviews.llvm.org/D77067
2020-04-10 13:59:25 -04:00