Now it will factor things like this:
CheckType i32
...
CheckOpcode ISD::AND
CheckType i64
...
into:
SwitchType:
i32: ...
i64:
CheckOpcode ISD::AND
...
This shrinks hte table by a few bytes, nothing spectacular.
llvm-svn: 97908
IF(condition(value)):
If the value satisfies the condition, the line is processed by lit; otherwise
it is skipped. A test with no unignored directives is resolved as Unsupported.
The test suite is responsible for defining conditions; conditions are unary
functions over strings. I've defined two conditions in the LLVM test suite,
TARGET (with values like those in TARGETS_TO_BUILD) and BINDING (with values
like those in llvm_bindings). So for example you can write:
IF(BINDING(ocaml)): RUN: %blah %s -o -
and the RUN line will only execute if LLVM was configured with the ocaml
bindings.
llvm-svn: 97726
sequence, just emit instruction predicates right before them. This
exposes yet more factoring opportunitites, shrinking the X86 table
to 79144 bytes.
llvm-svn: 97704
as the very last thing before node emission. This should
dramatically reduce the number of times we do 'MatchAddress'
on X86, speeding up compile time. This also improves comments
in the tables and shrinks the table a bit, now down to
80506 bytes for x86.
llvm-svn: 97703
SwitchOpcodeMatcher) and have DAGISelMatcherOpt form it. This
speeds up selection, particularly for X86 which has lots of
variants of instructions with only type differences.
llvm-svn: 97645
stuff now that we don't care about emulating the old broken
behavior of the old isel. This eliminates the
'CheckChainCompatible' check (along with IsChainCompatible) which
did an incorrect and inefficient scan *up* the chain nodes which
happened as the pattern was being formed and does the validation
at the end in HandleMergeInputChains when it forms a structural
pattern. This scans "down" the graph, which means that it is
quickly bounded by nodes already selected. This also handles
token factors that get "trapped" in the dag.
Removing the CheckChainCompatible nodes also shrinks the
generated tables by about 6K for X86 (down to 83K).
There are two pieces remaining before I can nuke PreprocessRMW:
1. I xfailed a test because we're now producing worse code in a
case that has nothing to do with the change: it turns out that
our use of MorphNodeTo will leave dead nodes in the graph
which (depending on how the graph is walked) end up causing
bogus uses of chains and blocking matches. This is really
bad for other reasons, so I'll fix this in a follow-up patch.
2. CheckFoldableChainNode needs to be improved to handle the TF.
llvm-svn: 97539
EmitMergeInputChainsMatcher node up into EmitResultCode. This
doesn't have much of an effect on the generated code, the X86
table is exactly the same size.
llvm-svn: 97514
ordered correctly. Previously it would get in trouble when
two patterns were too similar and give them nondet ordering.
We force this by using the record ID order as a fallback.
The testsuite diff is due to alpha patterns being ordered
slightly differently, the change is a semantic noop afaict:
< lda $0,-100($16)
---
> subq $16,100,$0
llvm-svn: 97509
This allows formation of OpcodeSwitch for top level patterns, in
particular on X86. This saves about 1K of data space in the x86
table and makes the dispatch much more efficient.
llvm-svn: 97440
ComplexPattern at the root be generated multiple times, once
for each opcode they are part of. This encourages factoring
because the opcode checks get treated just like everything
else in the matcher.
llvm-svn: 97439
to a scope where every child starts with a CheckOpcode, but
executes more efficiently. Enhance DAGISelMatcherOpt to
form it.
This also fixes a bug in CheckOpcode: apparently the SDNodeInfo
objects are not pointer comparable, we have to compare the
enum name.
llvm-svn: 97438
so that we get grouping at the top level.
Add an optimization to reorder type check & record nodes
after opcode checks. We prefer to expose tree shape
matching which improves grouping and will enhance the next
optimization.
llvm-svn: 97432
dispatcher method. This eliminates the dependence of the new isel's
generated code on the old isel's predicates, however some random
hand written isel code still uses them.
llvm-svn: 97431
specifies whether there is an output flag or not. Use this
instead of redundantly encoding the chain/flag results in the
output vtlist.
llvm-svn: 97419