This patch adds a basic loop fusion pass. It will fuse loops that conform to the
following 4 conditions:
1. Adjacent (no code between them)
2. Control flow equivalent (if one loop executes, the other loop executes)
3. Identical bounds (both loops iterate the same number of iterations)
4. No negative distance dependencies between the loop bodies.
The pass does not make any changes to the IR to create opportunities for fusion.
Instead, it checks if the necessary conditions are met and if so it fuses two
loops together.
The pass has not been added to the pass pipeline yet, and thus is not enabled by
default. It can be run stand alone using the -loop-fusion option.
Differential Revision: https://reviews.llvm.org/D55851
llvm-svn: 358607
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This patch adds a basic loop fusion pass. It will fuse loops that conform to the
following 4 conditions:
1. Adjacent (no code between them)
2. Control flow equivalent (if one loop executes, the other loop executes)
3. Identical bounds (both loops iterate the same number of iterations)
4. No negative distance dependencies between the loop bodies.
The pass does not make any changes to the IR to create opportunities for fusion.
Instead, it checks if the necessary conditions are met and if so it fuses two
loops together.
The pass has not been added to the pass pipeline yet, and thus is not enabled by
default. It can be run stand alone using the -loop-fusion option.
Phabricator: https://reviews.llvm.org/D55851
llvm-svn: 358543
Summary:
Enable some of the existing size optimizations for cold code under PGO.
A ~5% code size saving in big internal app under PGO.
The way it gets BFI/PSI is discussed in the RFC thread
http://lists.llvm.org/pipermail/llvm-dev/2019-March/130894.html
Note it doesn't currently touch loop passes.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: mgorny, javed.absar, smeenai, mehdi_amini, eraman, zzheng, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59514
llvm-svn: 358422
Straightforward port of StatepointIRVerifier pass to new Pass Manager framework.
Fix By: skatkov
Reviewed By: fedor.sergeev
Differential Revision: https://reviews.llvm.org/D59825
This is a re-land of r357147/r357148 with LLVM_ENABLE_MODULES build fixed.
Adding IR/SafepointIRVerifier.h into its own module.
llvm-svn: 357361
to unbreak the modular bots and its follow-up commit.
This reverts commit https://reviews.llvm.org/D59825
because it introduced a
fatal error: cyclic dependency in module 'LLVM_intrinsic_gen': LLVM_intrinsic_gen -> LLVM_IR -> LLVM_intrinsic_gen
llvm-svn: 357201
LTO provides additional opportunities for tailcall elimination due to
link-time inlining and visibility of nocapture attribute. Testing showed
negligible impact on compilation times.
Differential Revision: https://reviews.llvm.org/D58391
llvm-svn: 356511
The basic idea of the pass is to use a circular buffer to log the execution ordering of the functions. We only log the function when it is first executed. We use a 8-byte hash to log the function symbol name.
In this pass, we add three global variables:
(1) an order file buffer: a circular buffer at its own llvm section.
(2) a bitmap for each module: one byte for each function to say if the function is already executed.
(3) a global index to the order file buffer.
At the function prologue, if the function has not been executed (by checking the bitmap), log the function hash, then atomically increase the index.
Differential Revision: https://reviews.llvm.org/D57463
llvm-svn: 355133
Current PGO profile counts are not context sensitive. The branch probabilities
for the inlined functions are kept the same for all call-sites, and they might
be very different from the actual branch probabilities. These suboptimal
profiles can greatly affect some downstream optimizations, in particular for
the machine basic block placement optimization.
In this patch, we propose to have a post-inline PGO instrumentation/use pass,
which we called Context Sensitive PGO (CSPGO). For the users who want the best
possible performance, they can perform a second round of PGO instrument/use on
the top of the regular PGO. They will have two sets of profile counts. The
first pass profile will be manly for inline, indirect-call promotion, and
CGSCC simplification pass optimizations. The second pass profile is for
post-inline optimizations and code-gen optimizations.
A typical usage:
// Regular PGO instrumentation and generate pass1 profile.
> clang -O2 -fprofile-generate source.c -o gen
> ./gen
> llvm-profdata merge default.*profraw -o pass1.profdata
// CSPGO instrumentation.
> clang -O2 -fprofile-use=pass1.profdata -fcs-profile-generate -o gen2
> ./gen2
// Merge two sets of profiles
> llvm-profdata merge default.*profraw pass1.profdata -o profile.profdata
// Use the combined profile. Pass manager will invoke two PGO use passes.
> clang -O2 -fprofile-use=profile.profdata -o use
This change touches many components in the compiler. The reviewed patch
(D54175) will committed in phrases.
Differential Revision: https://reviews.llvm.org/D54175
llvm-svn: 354930
With or without PGO data applied, splitting early in the pipeline
(either before the inliner or shortly after it) regresses performance
across SPEC variants. The cause appears to be that splitting hides
context for subsequent optimizations.
Schedule splitting late again, in effect reversing r352080, which
scheduled the splitting pass early for code size benefits (documented in
https://reviews.llvm.org/D57082).
Differential Revision: https://reviews.llvm.org/D58258
llvm-svn: 354158
This is the second attempt to port ASan to new PM after D52739. This takes the
initialization requried by ASan from the Module by moving it into a separate
class with it's own analysis that the new PM ASan can use.
Changes:
- Split AddressSanitizer into 2 passes: 1 for the instrumentation on the
function, and 1 for the pass itself which creates an instance of the first
during it's run. The same is done for AddressSanitizerModule.
- Add new PM AddressSanitizer and AddressSanitizerModule.
- Add legacy and new PM analyses for reading data needed to initialize ASan with.
- Removed DominatorTree dependency from ASan since it was unused.
- Move GlobalsMetadata and ShadowMapping out of anonymous namespace since the
new PM analysis holds these 2 classes and will need to expose them.
Differential Revision: https://reviews.llvm.org/D56470
llvm-svn: 353985
Summary:
Follow up to D57082 which moved splitting earlier in the pipeline, in
order to perform it before inlining. However, it was moved too early,
before the IR is annotated with instrumented PGO data. This caused the
splitting to incorrectly determine cold functions.
Move it to just after PGO annotation (still before inlining), in both
pass managers.
Reviewers: vsk, hiraditya, sebpop
Subscribers: mehdi_amini, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57805
llvm-svn: 353270
Summary:
Follow on to D54819/r351476.
We also don't need to perform extra InstCombine pass when we aren't
loading the sample profile in the ThinLTO backend because we have a
flattened sample profile.
Additionally, for consistency and clarity, when we aren't reloading the
sample profile, perform ICP in the same location as non-sample PGO
backends. To this end I have moved the ICP invocation for non-SamplePGO
ThinLTO down into buildModuleSimplificationPipeline (partly addresses
the FIXME where we were previously setting this up).
Reviewers: wmi
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57705
llvm-svn: 353135
Introduces a pass that provides default lowering strategy for the
`experimental.widenable.condition` intrinsic, replacing all its uses with
`i1 true`.
Differential Revision: https://reviews.llvm.org/D56096
Reviewed By: reames
llvm-svn: 352739
Performing splitting early has several advantages:
- Inhibiting inlining of cold code early improves code size. Compared
to scheduling splitting at the end of the pipeline, this cuts code
size growth in half within the iOS shared cache (0.69% to 0.34%).
- Inhibiting inlining of cold code improves compile time. There's no
need to inline split cold functions, or to inline as much *within*
those split functions as they are marked `minsize`.
- During LTO, extra work is only done in the pre-link step. Less code
must be inlined during cross-module inlining.
An additional motivation here is that the most common cold regions
identified by the static/conservative splitting heuristic can (a) be
found before inlining and (b) do not grow after inlining. E.g.
__assert_fail, os_log_error.
The disadvantages are:
- Some opportunities for splitting out cold code may be missed. This
gap can potentially be narrowed by adding a worklist algorithm to the
splitting pass.
- Some opportunities to reduce code size may be lost (e.g. store
sinking, when one side of the CFG diamond is split). This does not
outweigh the code size benefits of splitting earlier.
On net, splitting early in the pipeline has substantial code size
benefits, and no major effects on memory locality or performance. We
measured memory locality using ktrace data, and consistently found that
10% fewer pages were needed to capture 95% of text page faults in key
iOS benchmarks. We measured performance on frequency-stabilized iOS
devices using LNT+externals.
This reverses course on the decision made to schedule splitting late in
r344869 (D53437).
Differential Revision: https://reviews.llvm.org/D57082
llvm-svn: 352080
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
If the sample profile has no inlining hierachy information included, we call
the sample profile is flattened. For flattened profile, in ThinLTO postlink
phase, SampleProfileLoader's hot function inlining and profile annotation will
do nothing, so it is better to save the effort to read in the profile and run
the sample profile loader pass. It is helpful for reducing compile time when
the flattened profile is huge.
Differential Revision: https://reviews.llvm.org/D54819
llvm-svn: 351476
Summary:
Second iteration of D56433 which got reverted in rL350719. The problem
in the previous version was that we dropped the thunk calling the tsan init
function. The new version keeps the thunk which should appease dyld, but is not
actually OK wrt. the current semantics of function passes. Hence, add a
helper to insert the functions only on the first time. The helper
allows hooking into the insertion to be able to append them to the
global ctors list.
Reviewers: chandlerc, vitalybuka, fedor.sergeev, leonardchan
Subscribers: hiraditya, bollu, llvm-commits
Differential Revision: https://reviews.llvm.org/D56538
llvm-svn: 351314
Allow to specify loop-unrolling with optional parameters explicitly
spelled out in -passes pipeline specification.
Introducing somewhat generic way of specifying parameters parsing via
FUNCTION_PASS_PARAMETRIZED pass registration.
Syntax of parametrized unroll pass name is as follows:
'unroll<' parameter-list '>'
Where parameter-list is ';'-separate list of parameter names and optlevel
optlevel: 'O[0-3]'
parameter: { 'partial' | 'peeling' | 'runtime' | 'upperbound' }
negated: 'no-' parameter
Example:
-passes=loop(unroll<O3;runtime;no-upperbound>)
this invokes LoopUnrollPass configured with OptLevel=3,
Runtime, no UpperBound, everything else by default.
llvm-svn: 350808
A straightforward port of tsan to the new PM, following the same path
as D55647.
Differential Revision: https://reviews.llvm.org/D56433
llvm-svn: 350647
The new-pm version of DA is untested. Testing requires a printer, so
add that and use it in the existing DA tests.
Differential Revision: https://reviews.llvm.org/D56386
llvm-svn: 350624
At -O0, globalopt is not run during the compile step, and we can have a
chain of an alias having an immediate aliasee of another alias. The
summaries are constructed assuming aliases in a canonical form
(flattened chains), and as a result only the base object but no
intermediate aliases were preserved.
Fix by adding a pass that canonicalize aliases, which ensures each
alias is a direct alias of the base object.
Reviewers: pcc, davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54507
llvm-svn: 350423
Summary:
Keeping msan a function pass requires replacing the module level initialization:
That means, don't define a ctor function which calls __msan_init, instead just
declare the init function at the first access, and add that to the global ctors
list.
Changes:
- Pull the actual sanitizer and the wrapper pass apart.
- Add a newpm msan pass. The function pass inserts calls to runtime
library functions, for which it inserts declarations as necessary.
- Update tests.
Caveats:
- There is one test that I dropped, because it specifically tested the
definition of the ctor.
Reviewers: chandlerc, fedor.sergeev, leonardchan, vitalybuka
Subscribers: sdardis, nemanjai, javed.absar, hiraditya, kbarton, bollu, atanasyan, jsji
Differential Revision: https://reviews.llvm.org/D55647
llvm-svn: 350305
-print-after IR printing generally can not print the IR unit (Loop or SCC)
which has just been invalidated by the pass. However, when working in -print-module-scope
mode even if Loop was invalidated there is still a valid module that we can print.
Since we can not access invalidated IR unit from AfterPassInvalidated instrumentation
point we can remember the module to be printed *before* pass. This change introduces
BeforePass instrumentation that stores all the information required for module printing
into the stack and then after pass (in AfterPassInvalidated) just print whatever
has been placed on stack.
Reviewed By: philip.pfaffe
Differential Revision: https://reviews.llvm.org/D55278
llvm-svn: 349896
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
IR-printing AfterPass instrumentation might be called on a loop
that has just been invalidated. We should skip printing it to
avoid spurious asserts.
Reviewed By: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D54740
llvm-svn: 348887
This patch introduces a new instinsic `@llvm.experimental.widenable_condition`
that allows explicit representation for guards. It is an alternative to using
`@llvm.experimental.guard` intrinsic that does not contain implicit control flow.
We keep finding places where `@llvm.experimental.guard` is not supported or
treated too conservatively, and there are 2 reasons to that:
- `@llvm.experimental.guard` has memory write side effect to model implicit control flow,
and this sometimes confuses passes and analyzes that work with memory;
- Not all passes and analysis are aware of the semantics of guards. These passes treat them
as regular throwing call and have no idea that the condition of guard may be used to prove
something. One well-known place which had caused us troubles in the past is explicit loop
iteration count calculation in SCEV. Another example is new loop unswitching which is not
aware of guards. Whenever a new pass appears, we potentially have this problem there.
Rather than go and fix all these places (and commit to keep track of them and add support
in future), it seems more reasonable to leverage the existing optimizer's logic as much as possible.
The only significant difference between guards and regular explicit branches is that guard's condition
can be widened. It means that a guard contains (explicitly or implicitly) a `deopt` block successor,
and it is always legal to go there no matter what the guard condition is. The other successor is
a guarded block, and it is only legal to go there if the condition is true.
This patch introduces a new explicit form of guards alternative to `@llvm.experimental.guard`
intrinsic. Now a widenable guard can be represented in the CFG explicitly like this:
%widenable_condition = call i1 @llvm.experimental.widenable.condition()
%new_condition = and i1 %cond, %widenable_condition
br i1 %new_condition, label %guarded, label %deopt
guarded:
; Guarded instructions
deopt:
call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
The new intrinsic `@llvm.experimental.widenable.condition` has semantics of an
`undef`, but the intrinsic prevents the optimizer from folding it early. This form
should exploit all optimization boons provided to `br` instuction, and it still can be
widened by replacing the result of `@llvm.experimental.widenable.condition()`
with `and` with any arbitrary boolean value (as long as the branch that is taken when
it is `false` has a deopt and has no side-effects).
For more motivation, please check llvm-dev discussion "[llvm-dev] Giving up using
implicit control flow in guards".
This patch introduces this new intrinsic with respective LangRef changes and a pass
that converts old-style guards (expressed as intrinsics) into the new form.
The naming discussion is still ungoing. Merging this to unblock further items. We can
later change the name of this intrinsic.
Reviewed By: reames, fedor.sergeev, sanjoy
Differential Revision: https://reviews.llvm.org/D51207
llvm-svn: 348593
Summary:
It turns out that we need an OptimizerLast PassBuilder extension point
after all. I missed the relevance of this EP the first time. By legacy PM magic,
function passes added at this EP get added to the last _Function_ PM, which is a
feature we lost when dropping this EP for the new PM.
A key difference between this and the legacy PassManager's OptimizerLast
callback is that this extension point is not triggered at O0. Extensions
to the O0 pipeline should append their passes to the end of the overall
pipeline.
Differential Revision: https://reviews.llvm.org/D54374
llvm-svn: 346645
Unlike its legacy counterpart new pass manager's LoopUnrollPass does
not provide any means to select which flavors of unroll to run
(runtime, peeling, partial), relying on global defaults.
In some cases having ability to run a restricted LoopUnroll that
does more than LoopFullUnroll is needed.
Introduced LoopUnrollOptions to select optional unroll behaviors.
Added 'unroll<peeling>' to PassRegistry mainly for the sake of testing.
Reviewers: chandlerc, tejohnson
Differential Revision: https://reviews.llvm.org/D53440
llvm-svn: 345723
This reverts commit 8d6af840396f2da2e4ed6aab669214ae25443204 and commit
b78d19c287b6e4a9abc9fb0545de9a3106d38d3d which causes slower build times
by initializing the AddressSanitizer on every function run.
The corresponding revisions are https://reviews.llvm.org/D52814 and
https://reviews.llvm.org/D52739.
llvm-svn: 345433
Summary:
Fix the new PM to only perform hot cold splitting once during ThinLTO,
by skipping it in the pre-link phase.
This was already fixed in the old PM by the move of the hot cold split
pass later (after the early return when PrepareForThinLTO) by r344869.
Reviewers: vsk, sebpop, hiraditya
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D53611
llvm-svn: 345096
Summary:
In the new+old pass manager, hot cold splitting was schedule too early.
Thanks to Vedant for pointing this out.
Reviewers: sebpop, vsk
Reviewed By: sebpop, vsk
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D53437
llvm-svn: 344869
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344685
Summary:
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344519
Removing deficiency of initial implementation of -print-before-all/-after-all
- it was effectively skipping IR printing for all the SCC passes.
Now LazyCallGraph:SCC gets its IR printed.
Reviewed By: skatkov
Differential Revision: https://reviews.llvm.org/D53270
llvm-svn: 344505
This patch ports the legacy pass manager to the new one to take advantage of
the benefits of the new PM. This involved moving a lot of the declarations for
`AddressSantizer` to a header so that it can be publicly used via
PassRegistry.def which I believe contains all the passes managed by the new PM.
This patch essentially decouples the instrumentation from the legacy PM such
hat it can be used by both legacy and new PM infrastructure.
Differential Revision: https://reviews.llvm.org/D52739
llvm-svn: 344274
This can be used to preserve profiling information across codebase
changes that have widespread impact on mangled names, but across which
most profiling data should still be usable. For example, when switching
from libstdc++ to libc++, or from the old libstdc++ ABI to the new ABI,
or even from a 32-bit to a 64-bit build.
The user can provide a remapping file specifying parts of mangled names
that should be treated as equivalent (eg, std::__1 should be treated as
equivalent to std::__cxx11), and profile data will be treated as
applying to a particular function if its name is equivalent to the name
of a function in the profile data under the provided equivalences. See
the documentation change for a description of how this is configured.
Remapping is supported for both sample-based profiling and instruction
profiling. We do not support remapping indirect branch target
information, but all other profile data should be remapped
appropriately.
Support is only added for the new pass manager. If someone wants to also
add support for this for the old pass manager, doing so should be
straightforward.
This is the LLVM side of Clang r344199.
Reviewers: davidxl, tejohnson, dlj, erik.pilkington
Subscribers: mehdi_amini, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51249
llvm-svn: 344200
Enable time-passes functionality through PassInstrumentation callbacks
for passes and analyses.
TimePassesHandler class keeps all the callbacks, the timing data as it
is being collected as well as the stack of currently active timers.
Parts of the fix that might be somewhat unobvious:
- mapping of passes into Timer (TimingData) can not be done per-instance.
PassID name provided into the callback is common for all the pass invocations.
Thus the only way to get a timing with reasonable granularity is to collect
timing data per pass invocation, getting a new timer for each BeforePass.
Hence the key for TimingData uses a pair of <StringRef/unsigned count> to
uniquely identify a pass invocation.
- consequently, this new-pass-manager implementation performs no aggregation
of timing data, reporting timings for each pass invocation separately.
In that it differs from legacy-pass-manager time-passes implementation that
reports timing data aggregated per pass instance.
- pass managers and adaptors are not tracked, similar to how pass managers are
not tracked in legacy time-passes.
- TimerStack tracks timers that are active, each BeforePass pushes the new timer
on stack, each AfterPass pops active timer from stack and stops it.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D51276
llvm-svn: 343898
Modified the testcases to use both pass managers
Use single commandline flag for both pass managers.
Differential Revision: https://reviews.llvm.org/D52708
Reviewers: sebpop, tejohnson, brzycki, SirishP
Reviewed By: tejohnson, brzycki
llvm-svn: 343662
This reverts commit r342387 as it's showing significant performance
regressions in a number of benchmarks. Followed up with the
committer and original thread with an example and will get performance
numbers before recommitting.
llvm-svn: 343522
Implementing -print-before-all/-print-after-all/-filter-print-func support
through PassInstrumentation callbacks.
- PrintIR routines implement printing callbacks.
- StandardInstrumentations class provides a central place to manage all
the "standard" in-tree pass instrumentations. Currently it registers
PrintIR callbacks.
Reviewers: chandlerc, paquette, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D50923
llvm-svn: 342896
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Made getName helper to return std::string (instead of StringRef initially) to fix
asan builtbot failures on CGSCC tests.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342664
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342597
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342544
Rebase rL341954 since https://bugs.llvm.org/show_bug.cgi?id=38912
has been fixed by rL342055.
Precommit testing performed:
* Overnight runs of csmith comparing the output between programs
compiled with gvn-hoist enabled/disabled.
* Bootstrap builds of clang with UbSan/ASan configurations.
llvm-svn: 342387
This reverts rL341954.
The builder `sanitizer-x86_64-linux-bootstrap-ubsan` has been
failing with timeouts at stage2 clang/ubsan:
[3065/3073] Linking CXX executable bin/lld
command timed out: 1200 seconds without output running python
../sanitizer_buildbot/sanitizers/buildbot_selector.py,
attempting to kill
llvm-svn: 342001
Summary:
Control height reduction merges conditional blocks of code and reduces the
number of conditional branches in the hot path based on profiles.
if (hot_cond1) { // Likely true.
do_stg_hot1();
}
if (hot_cond2) { // Likely true.
do_stg_hot2();
}
->
if (hot_cond1 && hot_cond2) { // Hot path.
do_stg_hot1();
do_stg_hot2();
} else { // Cold path.
if (hot_cond1) {
do_stg_hot1();
}
if (hot_cond2) {
do_stg_hot2();
}
}
This speeds up some internal benchmarks up to ~30%.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: xbolva00, dmgreen, mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D50591
llvm-svn: 341386
Rebase rL338240 since the excessive memory usage observed when using
GVNHoist with UBSan has been fixed by rL340818.
Differential Revision: https://reviews.llvm.org/D49858
llvm-svn: 340922
Summary:
Enable these passes for CFI and WPD in ThinLTO and LTO with the new pass
manager. Add a couple of tests for both PMs based on the clang tests
tools/clang/test/CodeGen/thinlto-distributed-cfi*.ll, but just test
through llvm-lto2 and not with distributed ThinLTO.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49429
llvm-svn: 337461
This is a simple implementation of the unroll-and-jam classical loop
optimisation.
The basic idea is that we take an outer loop of the form:
for i..
ForeBlocks(i)
for j..
SubLoopBlocks(i, j)
AftBlocks(i)
Instead of doing normal inner or outer unrolling, we unroll as follows:
for i... i+=2
ForeBlocks(i)
ForeBlocks(i+1)
for j..
SubLoopBlocks(i, j)
SubLoopBlocks(i+1, j)
AftBlocks(i)
AftBlocks(i+1)
Remainder Loop
So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now jammed loops.
To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).
Differential Revision: https://reviews.llvm.org/D41953
llvm-svn: 336062
and diretory.
Also cleans up all the associated naming to be consistent and removes
the public access to the pass ID which was unused in LLVM.
Also runs clang-format over parts that changed, which generally cleans
up a bunch of formatting.
This is in preparation for doing some internal cleanups to the pass.
Differential Revision: https://reviews.llvm.org/D47352
llvm-svn: 336028
Extends the CFGPrinter and CallPrinter with heat colors based on heuristics or
profiling information. The colors are enabled by default and can be toggled
on/off for CFGPrinter by using the option -cfg-heat-colors for both
-dot-cfg[-only] and -view-cfg[-only]. Similarly, the colors can be toggled
on/off for CallPrinter by using the option -callgraph-heat-colors for both
-dot-callgraph and -view-callgraph.
Patch by Rodrigo Caetano Rocha!
Differential Revision: https://reviews.llvm.org/D40425
llvm-svn: 335996
This pass is being added in order to make the information available to BasicAA,
which can't do caching of this information itself, but possibly this information
may be useful for other passes.
Incorporates code based on Daniel Berlin's implementation of Tarjan's algorithm.
Differential Revision: https://reviews.llvm.org/D47893
llvm-svn: 335857
=== Generating the CG Profile ===
The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.
After scanning all the functions, it generates an appending module flag containing the data. The format looks like:
```
!llvm.module.flags = !{!0}
!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}
```
Differential Revision: https://reviews.llvm.org/D48105
llvm-svn: 335794
loop-cleanup passes at the beginning of the loop pass pipeline, and
re-enqueue loops after even trivial unswitching.
This will allow us to much more consistently avoid simplifying code
while doing trivial unswitching. I've also added a test case that
specifically shows effective iteration using this technique.
I've unconditionally updated the new PM as that is always using the
SimpleLoopUnswitch pass, and I've made the pipeline changes for the old
PM conditional on using this new unswitch pass. I added a bunch of
comments to the loop pass pipeline in the old PM to make it more clear
what is going on when reviewing.
Hopefully this will unblock doing *partial* unswitching instead of just
full unswitching.
Differential Revision: https://reviews.llvm.org/D47408
llvm-svn: 333493
This is a simple implementation of the unroll-and-jam classical loop
optimisation.
The basic idea is that we take an outer loop of the form:
for i..
ForeBlocks(i)
for j..
SubLoopBlocks(i, j)
AftBlocks(i)
Instead of doing normal inner or outer unrolling, we unroll as follows:
for i... i+=2
ForeBlocks(i)
ForeBlocks(i+1)
for j..
SubLoopBlocks(i, j)
SubLoopBlocks(i+1, j)
AftBlocks(i)
AftBlocks(i+1)
Remainder
So we have unrolled the outer loop, then jammed the two inner loops into
one. This can lead to a simpler inner loop if memory accesses can be shared
between the now-jammed loops.
To do this we have to prove that this is all safe, both for the memory
accesses (using dependence analysis) and that ForeBlocks(i+1) can move before
AftBlocks(i) and SubLoopBlocks(i, j).
Differential Revision: https://reviews.llvm.org/D41953
llvm-svn: 333358
The plan had always been to move towards using this rather than so much
in-pass simplification within the loop pipeline, but we never got around
to it.... until only a couple months after it was removed due to disuse.
=/
This commit is just a pure revert of the removal. I will add tests and
do some basic cleanup in follow-up commits. Then I'll wire it into the
loop pass pipeline.
Differential Revision: https://reviews.llvm.org/D47353
llvm-svn: 333250
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Summary:
Add a new plugin API. This closes the gap between pass registration and out-of-tree passes for the new PassManager.
Unlike with the existing API, interaction with a plugin is always
initiated from the tools perspective. I.e., when a plugin is loaded, it
resolves and calls a well-known symbol `llvmGetPassPluginInfo` to obtain
details about the plugin. The fundamental motivation is to get rid of as
many global constructors as possible. The API exposed by the plugin
info is kept intentionally minimal.
Reviewers: chandlerc
Reviewed By: chandlerc
Subscribers: bollu, grosser, lksbhm, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D35258
llvm-svn: 329273
There are two nontrivial details here:
* Loop structure update interface is quite different with new pass manager,
so the code to add new loops was factored out
* BranchProbabilityInfo is not a loop analysis, so it can not be just getResult'ed from
within the loop pass. It cant even be queried through getCachedResult as LoopCanonicalization
sequence (e.g. LoopSimplify) might invalidate BPI results.
Complete solution for BPI will likely take some time to discuss and figure out,
so for now this was partially solved by making BPI optional in IRCE
(skipping a couple of profitability checks if it is absent).
Most of the IRCE tests got their corresponding new-pass-manager variant enabled.
Only two of them depend on BPI, both marked with TODO, to be turned on when BPI
starts being available for loop passes.
Reviewers: chandlerc, mkazantsev, sanjoy, asbirlea
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D43795
llvm-svn: 327619
LoopInstSimplify is unused and untested. Reading through the commit
history the pass also seems to have a high maintenance burden.
It would be best to retire the pass for now. It should be easy to
recover if we need something similar in the future.
Differential Revision: https://reviews.llvm.org/D44053
llvm-svn: 327329