The argument range checks for the HTM and Crypto builtins were implemented in
CGBuiltin.cpp, not in Sema. This change moves them to the appropriate location
in SemaChecking.cpp. It requires the creation of a new method in the Sema class
to do checks for PPC-specific builtins.
http://reviews.llvm.org/D8672
llvm-svn: 233586
Adds atomic update codegen for the following forms of expressions:
x binop= expr;
x++;
++x;
x--;
--x;
x = x binop expr;
x = expr binop x;
If x and expr are integer and binop is associative or x is a LHS in a RHS of the assignment expression, and atomics are allowed for type of x on the target platform atomicrmw instruction is emitted.
Otherwise compare-and-swap sequence is emitted:
bb:
...
atomic load <x>
cont:
<expected> = phi [ <x>, label %bb ], [ <new_failed>, %cont ]
<desired> = <expected> binop <expr>
<res> = cmpxchg atomic &<x>, desired, expected
<new_failed> = <res>.field1;
br <res>field2, label %exit, label %cont
exit:
...
Differential Revision: http://reviews.llvm.org/D8536
llvm-svn: 233513
Utilizing IMAGEREL relocations for synthetic IR constructs isn't
valuable, just clutter. While we are here, simplify HandlerType names
by making the numeric value for the 'adjective' part of the mangled name
instead of appending '.const', etc. The old scheme made for very long
global names and leads to wordy things like '.std_bad_alloc'
llvm-svn: 233503
order based on order of insertion.
This should cause both our warnings about these and the modules
serialization to be deterministic as a consequence.
Found by inspection.
llvm-svn: 233343
rewritten decls for Objective-C modules.
Found by inspection and completely obvious, so no test case. Many of the
remaining determinism fixes won't have precise test cases at this point,
but these are the kinds of things we wouldn't ask for a specific test of
during code review but ask authors to fix. The functionality isn't
changing, and should (he he!) already be tested.
llvm-svn: 233333
traversing the identifier table.
No easy test case as this table is somewhere between hard and impossible
to observe as non-deterministically ordered. The table is a hash table
but we hash the string contents and never remove entries from the table
so the growth pattern, etc, is all completely fixed. However, relying on
the hash function being deterministic is specifically against the
long-term direction of LLVM's hashing datastructures, which are intended
to provide *no* ordering guarantees. As such, this defends against these
things by sorting the identifiers. Sorting identifiers right before we
emit them to a serialized form seems a low cost for predictability here.
llvm-svn: 233332
Clang was inserting these into a dense map. While it never iterated the
dense map during normal compilation, it did when emitting a module. Fix
this by using a standard MapVector to preserve the order in which we
encounter the late parsed templates.
I suspect this still isn't ideal, as we don't seem to remove things from
this map even when we mark the templates as no longer late parsed. But
I don't know enough about this particular extension to craft a nice,
subtle test case covering this. I've managed to get the stress test to
at least do some late parsing and demonstrate the core problem here.
This patch fixes the test and provides deterministic behavior which is
a strict improvement over the prior state.
I've cleaned up some of the code here as well to be explicit about
inserting when that is what is actually going on.
llvm-svn: 233264
deterministically.
This fixes a latent issue where even Clang's Sema (and diagnostics) were
non-deterministic in the face of this pragma. The fix is super simple --
just use a MapVector so we track the order in which these are parsed (or
imported). Especially considering how rare they are, this seems like the
perfect tradeoff. I've also simplified the client code with judicious
use of auto and range based for loops.
I've added some pretty hilarious code to my stress test which now
survives the binary diff without issue.
llvm-svn: 233261
updated decl contexts get emitted.
Since this code was added, we have newer vastly simpler code for
handling this. The code I'm removing was very expensive and also
generated unstable order of declarations which made module outputs
non-deterministic.
All of the tests continue to pass for me and I'm able to check the
difference between the .pcm files after merging modules together.
llvm-svn: 233251
non-visible definition, skip the new definition and make the old one visible
instead of trying to parse it again and failing horribly. C++'s ODR allows
us to assume that the two definitions are identical.
llvm-svn: 233250
decl context lookup tables.
The first attepmt at this caused problems. We had significantly more
sources of non-determinism that I realized at first, and my change
essentially turned them from non-deterministic output into
use-after-free. Except that they weren't necessarily caught by tools
because the data wasn't really freed.
The new approach is much simpler. The first big simplification is to
inline the "visit" code and handle this directly. That works much
better, and I'll try to go and clean up the other caller of the visit
logic similarly.
The second key to the entire approach is that we need to *only* collect
names into a stable order at first. We then need to issue all of the
actual 'lookup()' calls in the stable order of the names so that we load
external results in a stable order. Once we have loaded all the results,
the table of results will stop being invalidated and we can walk all of
the names again and use the cheap 'noload_lookup()' method to quickly
get the results and serialize them.
To handle constructors and conversion functions (whose names can't be
stably ordered) in this approach, what we do is record only the visible
constructor and conversion function names at first. Then, if we have
any, we walk the decls of the class and add those names in the order
they occur in the AST. The rest falls out naturally.
This actually ends up simpler than the previous approach and seems much
more robust.
It uncovered a latent issue where we were building on-disk hash tables
for lookup results when the context was a linkage spec! This happened to
dodge all of the assert by some miracle. Instead, add a proper predicate
to the DeclContext class and use that which tests both for function
contexts and linkage specs.
It also uncovered PR23030 where we are forming somewhat bizarre negative
lookup results. I've just worked around this with a FIXME in place
because fixing this particular Clang bug seems quite hard.
I've flipped the first part of the test case I added for stability back
on in this commit. I'm taking it gradually to try and make sure the
build bots are happy this time.
llvm-svn: 233249
More than 2x speedup on modules builds with large redecl chains.
Roughly 15-20% speedup on non-modules builds for very large TUs.
Between 2-3% cost in memory on large TUs.
llvm-svn: 233228
they enable/disable.
This fixes two things:
a) sse4 isn't actually a target feature, don't treat it as one.
b) we weren't correctly disabling sse4.1 when we'd pass -mno-sse4
after enabling it, thus passing preprocessor directives and
(soon) passing the function attribute as well when we shouldn't.
llvm-svn: 233223
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], with both 'PowerPC HTM
Low Level Built-in Functions' and 'PowerPC HTM High Level Inline Functions'
implemented.
Along with builtins a new driver switch is added to enable/disable HTM
instruction support (-mhtm) and a header with common definitions (mostly to
parse the TFHAR register value). The HTM switch also sets a preprocessor builtin
HTM.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a llvm patch to enabled the builtins and option switch.
[1]
https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8248
llvm-svn: 233205
This fixes my stress tests non-determinism so far. However, I've not
started playing with templates, friends, or terrible macros. I've found
at least two more seeming instabilities and am just waiting for a test
case to actually trigger them.
llvm-svn: 233162
There are two aspects of non-determinism fixed here, which was the
minimum required to cause at least an empty module to be deterministic.
First, the random number signature is only inserted into the module when
we are building modules implicitly. The use case for these random
signatures is to work around the very fact that modules are not
deterministic in their output when working with the implicitly built and
populated module cache. Eventually this should go away entirely when
we're confident that Clang is producing deterministic output.
Second, the on-disk hash table is populated based on the order of
iteration over a DenseMap. Instead, use a MapVector so that we can walk
it in insertion order.
I've added a test that an empty module, when built twice, produces the
same binary PCM file.
llvm-svn: 233115
Previously we'd deserialize the list of mem-initializers for a constructor when
we deserialized the declaration of the constructor. That could trigger a
significant amount of unnecessary work (pulling in all base classes
recursively, for a start) and was causing problems for the modules buildbot due
to cyclic deserializations. We now deserialize these on demand.
This creates a certain amount of duplication with the handling of
CXXBaseSpecifiers; I'll look into reducing that next.
llvm-svn: 233052
* Strength reduce a std::function to a function pointer,
* Factor out checking the AST file magic number,
* Add a brief doc comment to readAStFileSignature
Thanks to Chandler for spotting these oddities.
llvm-svn: 233050
rather than just the primary context. This is technically correct but results
in no functionality change (in Clang nor LLDB) because all users of this
functionality only use it on single-context DCs.
llvm-svn: 233045
All ParseCXXInlineMethodDef does with it is assign it on the ParsingDeclarator.
Since that is passed in as well, the (single) caller may as well set the
DefinitionKind, thus simplifying the code.
No change in functionality.
llvm-svn: 233043
PS4 target recognizes the #pragma comment() syntax as in -fms-extensions, but
only handles the case of #pragma comment(lib). This patch adds a warning if any
other arguments are encountered.
This patch also refactors the code in ParsePragma.cpp a little bit to make it
more obvious that some codes are being shared between -fms-extensions and PS4.
llvm-svn: 233015
If there is at least one 'copyprivate' clause is associated with the single directive, the following code is generated:
```
i32 did_it = 0; \\ for 'copyprivate' clause
if(__kmpc_single(ident_t *, gtid)) {
SingleOpGen();
__kmpc_end_single(ident_t *, gtid);
did_it = 1; \\ for 'copyprivate' clause
}
<copyprivate_list>[0] = &var0;
...
<copyprivate_list>[n] = &varn;
call __kmpc_copyprivate(ident_t *, gtid, <copyprivate_list_size>,
<copyprivate_list>, <copy_func>, did_it);
...
void<copy_func>(void *LHSArg, void *RHSArg) {
Dst = (void * [n])(LHSArg);
Src = (void * [n])(RHSArg);
Dst[0] = Src[0];
... Dst[n] = Src[n];
}
```
All list items from all 'copyprivate' clauses are gathered into single <copyprivate list> (<copyprivate_list_size> is a size in bytes of this list) and <copy_func> is used to propagate values of private or threadprivate variables from the 'single' region to other implicit threads from outer 'parallel' region.
Differential Revision: http://reviews.llvm.org/D8410
llvm-svn: 232932
for a DeclContext, and fix propagation of exception specifications along
redeclaration chains.
This reverts r232905, r232907, and r232907, which reverted r232793, r232853,
and r232853.
One additional change is present here to resolve issues with LLDB: distinguish
between whether lexical decls missing from the lookup table are local or are
provided by the external AST source, and still look in the external source if
that's where they came from.
llvm-svn: 232928
The deduplication here is negligible, but it allows the compiler to
skip emission of many templated base class destructors. Shrinks
clang-query by 53k. No functionality change intended.
llvm-svn: 232924