Implementing this via ComputeMaskedBits has two advantages:
+ It actually works. DAGISel doesn't deal with the chains properly
in the previous pattern-based solution, so they never trigger.
+ The information can be used in other DAG combines, as well as the
trivial "get rid of truncs". For example if the trunc is in a
different basic block.
rdar://problem/16227836
llvm-svn: 205540
The terminal barrier of a cmpxchg expansion will be either Acquire or
SequentiallyConsistent. In either case it can be skipped if the
operation has Monotonic requirements on failure.
rdar://problem/15996804
llvm-svn: 205535
The previous situation where ATOMIC_LOAD_WHATEVER nodes were expanded
at MachineInstr emission time had grown to be extremely large and
involved, to account for the subtly different code needed for the
various flavours (8/16/32/64 bit, cmpxchg/add/minmax).
Moving this transformation into the IR clears up the code
substantially, and makes future optimisations much easier:
1. an atomicrmw followed by using the *new* value can be more
efficient. As an IR pass, simple CSE could handle this
efficiently.
2. Making use of cmpxchg success/failure orderings only has to be done
in one (simpler) place.
3. The common "cmpxchg; did we store?" idiom can be exposed to
optimisation.
I intend to gradually improve this situation within the ARM backend
and make sure there are no hidden issues before moving the code out
into CodeGen to be shared with (at least ARM64/AArch64, though I think
PPC & Mips could benefit too).
llvm-svn: 205525
The trouble as in ARMAsmParser, in ParseInstruction method. It assumes that ARM::R12 + 1 == ARM::SP.
It is wrong, since ARM::<Register> codes are generated by tablegen and actually could be any random numbers.
llvm-svn: 205524
add operation since extract_vector_elt can perform an extend operation. Get the input lane
type from the vector on which we're performing the vpaddl operation on and extend or
truncate it to the output type of the original add node.
llvm-svn: 205523
Just pass a MachineInstr reference rather than an MBB iterator.
Creating a MachineInstr& is the first thing every implementation did
anyway.
llvm-svn: 205453
Unlike other v6+ processors, cortex-m0 never supports unaligned accesses.
From the v6m ARM ARM:
"A3.2 Alignment support: ARMv6-M always generates a fault when an unaligned
access occurs."
rdar://16491560
llvm-svn: 205452
ARM specific optimiztion, finding places in ARM machine code where 2 dmbs
follow one another, and eliminating one of them.
Patch by Reinoud Elhorst.
llvm-svn: 205409
The Cyclone CPU is similar to swift for most LLVM purposes, but does have two
preferred instructions for zeroing a VFP register. This teaches LLVM about
them.
llvm-svn: 205309
Issue subject: Crash using integrated assembler with immediate arithmetic
Fix description:
Expressions like 'cmp r0, #(l1 - l2) >> 3' could not be evaluated on asm parsing stage,
since it is impossible to resolve labels on this stage. In the end of stage we still have
expression (MCExpr).
Then, when we want to encode it, we expect it to be an immediate, but it still an expression.
Patch introduces a Fixup (MCFixup instance), that is processed after main encoding stage.
llvm-svn: 205094
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
llvm-svn: 205076
Fix description:
Expressions like 'cmp r0, #(l1 - l2) >> 3' could not be evaluated on asm parsing stage,
since it is impossible to resolve labels on this stage. In the end of stage we still have
expression (MCExpr).
Then, when we want to encode it, we expect it to be an immediate, but it still an expression.
Patch introduces a Fixup (MCFixup instance), that is processed after main encoding stage.
llvm-svn: 204899
vector list parameter that is using all lanes "{d0[], d2[]}" but can
match and instruction with a ”{d0, d2}" parameter.
I’m finishing up a fix for proper checking of the unsupported
alignments on vld/vst instructions and ran into this. Thus I don’t
have a test case at this time. And adding all code that will
demonstrate the bug would obscure the very simple one line fix.
So if you would indulge me on not having a test case at this
time I’ll instead offer up a detailed explanation of what is
going on in this commit message.
This instruction:
vld2.8 {d0[], d2[]}, [r4:64]
is not legal as the alignment can only be 16 when the size is 8.
Per this documentation:
A8.8.325 VLD2 (single 2-element structure to all lanes)
<align> The alignment. It can be one of:
16 2-byte alignment, available only if <size> is 8, encoded as a = 1.
32 4-byte alignment, available only if <size> is 16, encoded as a = 1.
64 8-byte alignment, available only if <size> is 32, encoded as a = 1.
omitted Standard alignment, see Unaligned data access on page A3-108.
So when code is added to the llvm integrated assembler to not match
that instruction because of the alignment it then goes on to try to match
other instructions and comes across this:
vld2.8 {d0, d2}, [r4:64]
and and matches it. This is because of the method
ARMOperand::isVecListDPairSpaced() is missing the check of the Kind.
In this case the Kind is k_VectorListAllLanes . While the name of the method
may suggest that this is OK it really should check that the Kind is
k_VectorList.
As the method ARMOperand::isDoubleSpacedVectorAllLanes() is what was
used to match {d0[], d2[]} and correctly checks the Kind:
bool isDoubleSpacedVectorAllLanes() const {
return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
}
where the original ARMOperand::isVecListDPairSpaced() does not check
the Kind:
bool isVecListDPairSpaced() const {
if (isSingleSpacedVectorList()) return false;
return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
.contains(VectorList.RegNum));
}
Jim Grosbach has reviewed the change and said: Yep, that sounds right. …
And by "right" I mean, "wow, that's a nasty latent bug I'm really, really
glad to see fixed." :)
rdar://16436683
llvm-svn: 204861
We've already got versions without the barriers, so this just adds IR-level
support for generating the new v8 ones.
rdar://problem/16227836
llvm-svn: 204813
After some discussion on IRC, emitting a call to the library function seems
like a better default, since it will move from a compiler internal error to
a linker error, that the user can work around until LLVM is fixed.
I'm also adding a note on the responsibility of the user to confirm that
the cache was cleared on platforms where nothing is done.
llvm-svn: 204806
Implementing the LLVM part of the call to __builtin___clear_cache
which translates into an intrinsic @llvm.clear_cache and is lowered
by each target, either to a call to __clear_cache or nothing at all
incase the caches are unified.
Updating LangRef and adding some tests for the implemented architectures.
Other archs will have to implement the method in case this builtin
has to be compiled for it, since the default behaviour is to bail
unimplemented.
A Clang patch is required for the builtin to be lowered into the
llvm intrinsic. This will be done next.
llvm-svn: 204802
When a label is parsed, check if there is type information available for the
label. If so, check if the symbol is a function. If the symbol is a function
and we are in thumb mode and no explicit thumb_func has been emitted, adjust the
symbol data to indicate that the function definition is a thumb function.
The application of this inferencing is improved value handling in the object
file (the required thumb bit is set on symbols which are thumb functions). It
also helps improve compatibility with binutils.
The one complication that arises from this handling is the MCAsmStreamer. The
default implementation of getOrCreateSymbolData in MCStreamer does not support
tracking the symbol data. In order to support the semantics of thumb functions,
track symbol data in assembly streamer. Although O(n) in number of labels in
the TU, this is already done in various other streamers and as such the memory
overhead is not a practical concern in this scenario.
llvm-svn: 204544
Sicne MBB->computeRegisterLivenes() returns Dead for sub regs like s0,
d0 is used in vpop instead of updating sp, which causes s0 dead before
its use.
This patch checks the liveness of each subreg to make sure the reg is
actually dead.
llvm-svn: 204411
Given
bar = foo + 4
.long bar
MC would eat the 4. GNU as includes it in the relocation. The rule seems to be
that a variable that defines a symbol is used in the relocation and one that
does not define a symbol is evaluated and the result included in the relocation.
Fixing this unfortunately required some other changes:
* Since the variable is now evaluated, it would prevent the ELF writer from
noticing the weakref marker the elf streamer uses. This patch then replaces
that with a VariantKind in MCSymbolRefExpr.
* Using VariantKind then requires us to look past other VariantKind to see
.weakref bar,foo
call bar@PLT
doing this also fixes
zed = foo +2
call zed@PLT
so that is a good thing.
* Looking past VariantKind means that the relocation selection has to use
the fixup instead of the target.
This is a reboot of the previous fixes for MC. I will watch the sanitizer
buildbot and wait for a build before adding back the previous fixes.
llvm-svn: 204294
The revision I'm reverting breaks handling of transitive aliases. This blocks us
and breaks sanitizer bootstrap:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/2651
(and checked locally by Alexey).
This revision is the result of:
svn merge -r204059:204058 -r204028:204027 -r203962:203961 .
+ the regression test added to test/MC/ELF/alias.s
Another way to reproduce the regression with clang:
$ cat q.c
void a1();
void a2() __attribute__((alias("a1")));
void a3() __attribute__((alias("a2")));
void a1() {}
$ ~/work/llvm-build/bin/clang-3.5-good -c q.c && mv q.o good.o && \
~/work/llvm-build/bin/clang-3.5-bad -c q.c && mv q.o bad.o && \
objdump -t good.o bad.o
good.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 q.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 g F .text 0000000000000006 a1
0000000000000000 g F .text 0000000000000006 a2
0000000000000000 g F .text 0000000000000006 a3
bad.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 q.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 g F .text 0000000000000006 a1
0000000000000000 g F .text 0000000000000006 a2
0000000000000000 g .text 0000000000000000 a3
llvm-svn: 204137
Add an assertion that a valid section is referenced. The potential NULL pointer
dereference was identified by the clang static analyzer.
llvm-svn: 204114
This performs the equivalent of a .set directive in that it creates a symbol
which is an alias for another symbol or value which may possibly be yet
undefined. This directive also has the added property in that it marks the
aliased symbol as being a thumb function entry point, in the same way that the
.thumb_func directive does.
The current implementation fails one test due to an unrelated issue. Functions
within .thumb sections are not marked as thumb_func. The result is that
the aliasee function is not valued correctly.
llvm-svn: 204059
operator* on the by-operand iterators to return a MachineOperand& rather than
a MachineInstr&. At this point they almost behave like normal iterators!
Again, this requires making some existing loops more verbose, but should pave
the way for the big range-based for-loop cleanups in the future.
llvm-svn: 203865
This is a follow-up to r203635. Saleem pointed out that since symbolic register
names are much easier to read, it would be good if we could turn them off only
when we really need to because we're using an external assembler.
Differential Revision: http://llvm-reviews.chandlerc.com/D3056
llvm-svn: 203806
Support to the IAS was added to actually parse and handle the complex SO
expressions. However, the object file lowering was not updated to compensate
for the fact that the shift operand may be an absolute expression.
When trying to assemble to an object file, the lowering would fail while
succeeding when emitting purely assembly. Add an appropriate test.
The test case is inspired by the test case provided by Jiangning Liu who also
brought the issue to light.
llvm-svn: 203762
When the list of VFP registers to be saved was non-contiguous (so multiple
vpush/vpop instructions were needed) these were being ordered oddly, as in:
vpush {d8, d9}
vpush {d11}
This led to the layout in memory being [d11, d8, d9] which is ugly and doesn't
match the CFI_INSTRUCTIONs we're generating either (so Dwarf info would be
broken).
This switches the order of vpush/vpop (in both prologue and epilogue,
obviously) so that the Dwarf locations are correct again.
rdar://problem/16264856
llvm-svn: 203655
It seems gas can't handle CFI directives with VFP register names ("d12", etc.).
This broke us trying to build Chromium for Android after 201423.
A gas bug has been filed: https://sourceware.org/bugzilla/show_bug.cgi?id=16694
compnerd suggested making this conditional on whether we're using the integrated
assembler or not. I'll look into that in a follow-up patch.
Differential Revision: http://llvm-reviews.chandlerc.com/D3049
llvm-svn: 203635
Use the options in the ARMISelLowering to control whether tail calls are
optimised or not. Previously, this option was entirely ignored on the ARM
target and only honoured on x86.
This option is mostly useful in profiling scenarios. The default remains that
tail call optimisations will be applied.
llvm-svn: 203577
This option is from 2010, designed to work around a linker issue on Darwin for
ARM. According to grosbach this is no longer an issue and this option can
safely be removed.
llvm-svn: 203576
Tail call optimisation was previously disabled on all targets other than
iOS5.0+. This enables the tail call optimisation on all Thumb 2 capable
platforms.
The test adjustments are to remove the IR hint "tail" to function invocation.
The tests were designed assuming that tail call optimisations would not kick in
which no longer holds true.
llvm-svn: 203575
ATOMIC_STORE operations always get here as a lowered ATOMIC_SWAP, so there's no
need for any code to handle them specially.
There should be no functionality change so no tests.
llvm-svn: 203567
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
llvm-svn: 203559
the stack of the analysis group because they are all immutable passes.
This is made clear by Craig's recent work to use override
systematically -- we weren't overriding anything for 'finalizePass'
because there is no such thing.
This is kind of a lame restriction on the API -- we can no longer push
and pop things, we just set up the stack and run. However, I'm not
invested in building some better solution on top of the existing
(terrifying) immutable pass and legacy pass manager.
llvm-svn: 203437
Summary:
llvm/MC/MCSectionMachO.h and llvm/Support/MachO.h both had the same
definitions for the section flags. Instead, grab the definitions out of
support.
No functionality change.
Reviewers: grosbach, Bigcheese, rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2998
llvm-svn: 203211
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
llvm-svn: 203204
This is a preliminary setup change to support a renaming of Windows target
triples. Split the object file format information out of the environment into a
separate entity. Unfortunately, file format was previously treated as an
environment with an unknown OS. This is most obvious in the ARM subtarget where
the handling for macho on an arbitrary platform switches to AAPCS rather than
APCS (as per Apple's needs).
llvm-svn: 203160
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.
Another step of modularizing the support library.
llvm-svn: 202815
This is a temporary workaround for native arm linux builds:
PR18996: Changing regalloc order breaks "lencod" on native arm linux builds.
llvm-svn: 202433
scan the register file for sub- and super-registers.
No functionality change intended.
(Tests are updated because the comments in the assembler output are
different.)
llvm-svn: 202416
.align is handled specially on certain targets. .align without any parameters
on ARM indicates a default alignment (4). Handle the special case in the target
parser, but fall back to the generic parser for the normal version.
llvm-svn: 201988
This adds support for the .short and its alias .hword for adding literal values
into the object file. This is similar to the .word directive, however, rather
than inserting a value of 4 bytes, adds a 2-byte value.
llvm-svn: 201968
This commit moves getSLEB128Size() and getULEB128Size() from
MCAsmInfo to LEB128.h and removes some copy-and-paste code.
Besides, this commit also adds some unit tests for the LEB128
functions.
llvm-svn: 201937
TargetLoweringBase is implemented in CodeGen, so before this patch we had
a dependency fom Target to CodeGen. This would show up as a link failure of
llvm-stress when building with -DBUILD_SHARED_LIBS=ON.
This fixes pr18900.
llvm-svn: 201711
r201608 made llvm corretly handle private globals with MachO. r201622 fixed
a bug in it and r201624 and r201625 were changes for using private linkage,
assuming that llvm would do the right thing.
They all got reverted because r201608 introduced a crash in LTO. This patch
includes a fix for that. The issue was that TargetLoweringObjectFile now has
to be initialized before we can mangle names of private globals. This is
trivially true during the normal codegen pipeline (the asm printer does it),
but LTO has to do it manually.
llvm-svn: 201700
The IR
@foo = private constant i32 42
is valid, but before this patch we would produce an invalid MachO from it. It
was invalid because it would use an L label in a section where the liker needs
the labels in order to atomize it.
One way of fixing it would be to just reject this IR in the backend, but that
would not be very front end friendly.
What this patch does is use an 'l' prefix in sections that we know the linker
requires symbols for atomizing them. This allows frontends to just use
private and not worry about which sections they go to or how the linker handles
them.
One small issue with this strategy is that now a symbol name depends on the
section, which is not available before codegen. This is not a problem in
practice. The reason is that it only happens with private linkage, which will
be ignored by the non codegen users (llvm-nm and llvm-ar).
llvm-svn: 201608
ldrd r6, r7 [r2, #15]
simply gives an error and does not triggers an assertion.
As Jim points out, the diagnostic is really strange here,
but fixing that would be more complicated. The missing
comma results in the parser expecting a construct like r2[2],
which is the vector index thing the error message is talking
about. That's not what the user intended, though, and there's
nothing else in the instruction that looks at all like a vector.
Yet more fallout from not having a real parser here and trying
to do context-free generic matching for addressing modes.
rdar://15097243
llvm-svn: 201531
NaCl's ARM ABI uses 16 byte stack alignment, so set that in
ARMSubtarget.cpp.
Using 16 byte alignment exposes an issue in code generation in which a
varargs function leaves a 4 byte gap between the values of r1-r3 saved
to the stack and the following arguments that were passed on the
stack. (Previously, this code only needed to support 4 byte and 8
byte alignment.)
With this issue, llc generated:
varargs_func:
sub sp, sp, #16
push {lr}
sub sp, sp, #12
add r0, sp, #16 // Should be 20
stm r0, {r1, r2, r3}
ldr r0, .LCPI0_0 // Address of va_list
add r1, sp, #16
str r1, [r0]
bl external_func
Fix the bug by checking for "Align > 4". Also simplify the code by
using OffsetToAlignment(), and update comments.
Differential Revision: http://llvm-reviews.chandlerc.com/D2677
llvm-svn: 201497
This adds a partial implementation of the .arch_extension directive to the
integrated ARM assembler. There are a number of limitations to this
implementation arising from the target backend support rather than the
implementation itself. Namely, iWMMXT (v1 and v2), Maverick, and XScale support
is not present in the ARM backend. Currently, there is no check for A-class
only (needed for virt), and no ARMv6k detection (needed for os and sec). The
remainder of the extensions are fully supported.
llvm-svn: 201471
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for
targets with mature MC support. Such targets will always parse the inline
assembly (even when emitting assembly). Targets without mature MC support
continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced
with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler
to parse inline assembly (even when emitting assembly output). UseIntegratedAs
is set to true for targets that consider any failure to parse valid assembly
to be a bug. Target specific subclasses generally enable the integrated
assembler in their constructor. The default value can be overridden with
-no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example,
those that use mnemonics such as 'foo' or 'hello world') have been updated to
disable the integrated assembler.
Changes since review (and last commit attempt):
- Fixed test failures that were missed due to configuration of local build.
(fixes crash.ll and a couple others).
- Fixed tests that happened to pass because the local build was on X86
(should fix 2007-12-17-InvokeAsm.ll)
- mature-mc-support.ll's should no longer require all targets to be compiled.
(should fix ARM and PPC buildbots)
- Object output (-filetype=obj and similar) now forces the integrated assembler
to be enabled regardless of default setting or -no-integrated-as.
(should fix SystemZ buildbots)
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201333
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201237
* CPRCs may be allocated to co-processor registers or the stack – they may never be allocated to core registers
* When a CPRC is allocated to the stack, all other VFP registers should be marked as unavailable
The difference is only noticeable in rare cases where there are a large number of floating point arguments (e.g.
7 doubles + additional float, double arguments). Although it's probably still better to avoid vmov as it can cause
stalls in some older ARM cores. The other, more subtle benefit, is to minimize difference between the various
calling conventions.
rdar://16039676
llvm-svn: 201193
Similarly to the vshrn instructions, these are simple zext/sext + trunc
operations. Using normal LLVM IR should allow for better code, and more sharing
with the AArch64 backend.
llvm-svn: 201093
For A- and R-class processors, r12 is not normally callee-saved, but is for
interrupt handlers. See AAPCS, 5.3.1.1, "Use of IP by the linker".
llvm-svn: 201089
vshrn is just the combination of a right shift and a truncate (and the limits
on the immediate value actually mean the signedness of the shift doesn't
matter). Using that representation allows us to get rid of an ARM-specific
intrinsic, share more code with AArch64 and hopefully get better code out of
the mid-end optimisers.
llvm-svn: 201085
These methods normally call each other and it is really annoying if the
arguments are in different order. The more common rule was that the arguments
specific to call are first (GV, Encoding, Suffix) and the auxiliary objects
(Mang, TM) come after. This patch changes the exceptions.
llvm-svn: 201044
According to the AAPCS, when a CPRC is allocated to the stack, all other
VFP registers should be marked as unavailable.
I have also modified the rules for allocating non-CPRCs to the stack, to make
it more explicit that all GPRs must be made unavailable. I cannot think of a
case where the old version would produce incorrect answers, so there is no test
for this.
llvm-svn: 200970
In a previous commit (r199818) we added a const_cast to an existing
subtarget info instead of creating a new one so that we could reuse
it when creating the TargetAsmParser for parsing inline assembly.
This cast was necessary because we needed to reuse the existing STI
to avoid generating incorrect code when the inline asm contained
mode-switching directives (e.g. .code 16).
The root cause of the failure was that there was an implicit sharing
of the STI between the parser and the MCCodeEmitter. To fix a
different but related issue, we now explicitly pass the STI to the
MCCodeEmitter (see commits r200345-r200351).
The const_cast is no longer necessary and we can now create a fresh
STI for the inline asm parser to use.
Differential Revision: http://llvm-reviews.chandlerc.com/D2709
llvm-svn: 200929
In Thumb1 mode, bl instruction might be selected for branches between
basic blocks in the function if the offset is greater than 2KB.
However, this might cause SEGV because the destination symbol
is not marked as thumb function and the execution mode will be reset
to ARM mode.
Since we are sure that these symbols are in the same data fragment, we
can simply resolve these local symbols, and don't emit any relocation
information for this bl instruction.
llvm-svn: 200842
This patch fixes the ldr-pseudo implementation to work when used in
inline assembly. The fix is to move arm assembler constant pools
from the ARMAsmParser class to the ARMTargetStreamer class.
Previously we kept the assembler generated constant pools in the
ARMAsmParser object. This does not work for inline assembly because
a new parser object is created for each blob of inline assembly.
This patch moves the constant pools to the ARMTargetStreamer class
so that the constant pool will remain alive for the entire code
generation process.
An ARMTargetStreamer class is now required for the arm backend.
There was no existing implementation for MachO, only Asm and ELF.
Instead of creating an empty MachO subclass, we decided to make the
ARMTargetStreamer a non-abstract class and provide default
(llvm_unreachable) implementations for the non constant-pool related
methods.
Differential Revision: http://llvm-reviews.chandlerc.com/D2638
llvm-svn: 200777
There was an extremely confusing proliferation of LLVM intrinsics to implement
the vacge & vacgt instructions. This combines them all into two polymorphic
intrinsics, shared across both backends.
llvm-svn: 200768
Some of the SHA instructions take a scalar i32 as one argument (largely because
they work on 160-bit hash fragments). This wasn't reflected in the IR
previously, with ARM and AArch64 choosing different types (<4 x i32> and <1 x
i32> respectively) which was ugly.
This makes all the affected intrinsics take a uniform "i32", allowing them to
become non-polymorphic at the same time.
llvm-svn: 200706
The .object_arch directive indicates an alternative architecture to be specified
in the object file. The directive does *not* effect the enabled feature bits
for the object file generation. This is particularly useful when the code
performs runtime detection and would like to indicate a lower architecture as
the requirements than the actual instructions used.
llvm-svn: 200451
.movsp is an ARM unwinding directive that indicates to the unwinder that a
register contains an offset from the current stack pointer. If the offset is
unspecified, it defaults to zero.
llvm-svn: 200449
This enhances the ARMAsmParser to handle .tlsdescseq directives. This is a
slightly special relocation. We must be able to generate them, but not consume
them in assembly. The relocation is meant to assist the linker in generating a
TLS descriptor sequence. The ELF target streamer is enhanced to append
additional fixups into the current segment and that is used to emit the new
R_ARM_TLS_DESCSEQ relocations.
llvm-svn: 200448
Add support for tlsdesc relocations which are part of the ABI, marked as
experimental. These relocations permit the linker to perform TLS reference
optimizations.
llvm-svn: 200447
This adds support for TLS CALL relocations. TLS CALL relocations are used to
indicate to the linker to generate appropriate entries to resolve TLS references
via an appropriate function invocation (e.g. __tls_get_addr(PLT)).
In order to accomodate the linker relaxation of the TLS access model for the
references (GD/LD -> IE, IE -> LE), the relocation addend must be incomplete.
This requires that the partial inplace value is also incomplete (i.e. 0). We
simply avoid the offset value calculation at the time of the fixup adjustment in
the ARM assembler backend.
llvm-svn: 200446
After all hard work to implement the EHABI and with the test-suite
passing, it's time to turn it on by default and allow users to
disable it as a work-around while we fix the eventual bugs that show
up.
This commit also remove the -arm-enable-ehabi-descriptors, since we
want the tables to be printed every time the EHABI is turned on
for non-Darwin ARM targets.
Although MCJIT EHABI is not working yet (needs linking with the right
libraries), this commit also fixes some relocations on MCJIT regarding
the EH tables/lib calls, and update some tests to avoid using EH tables
when none are needed.
The EH tests in the test-suite that were previously disabled on ARM
now pass with these changes, so a follow-up commit on the test-suite
will re-enable them.
llvm-svn: 200388
The subtarget info is explicitly passed to the EncodeInstruction
method and we should use that subtarget info to influence any
encoding decisions.
llvm-svn: 200350
Before this patch we used getIntImmCost from TargetTransformInfo to determine if
a load of a constant should be converted to just a constant, but the threshold
for this was set to an arbitrary value. This value works well for the two
targets (X86 and ARM) that implement this target-hook, but it isn't
target-independent at all.
Now targets have the possibility to decide directly if this optimization should
be performed. The default value is set to false to preserve the current
behavior. The target hook has been moved to TargetLowering, which removed the
last use and need of TargetTransformInfo in SelectionDAG.
llvm-svn: 200271
This brings MC into line with GNU 'as' on ARM, and it brings the ARM
target into line with most other LLVM targets, which declare the
initial CFI state with addInitialFrameState().
Without this, functions generated with .cfi_startproc/endproc on ARM
will tend to cause GDB to abort with:
gdb/dwarf2-frame.c:1132: internal-error: Unknown CFA rule.
I've also tested this by comparing the output of "readelf -w" on the
object files produced by llvm-mc and gas when given the .s file added
here.
This change is part of addressing PR18636.
Differential Revision: http://llvm-reviews.chandlerc.com/D2597
llvm-svn: 200255
Summary:
This commit gives an address mode to the PLD instruction. We
were getting an assertion failure in the frame lowering code
because we had code that was doing a pld of a stack allocated
address. The frame lowering was checking the address mode and
then asserting because pld had none defined.
This commit fixes pld for arm mode. There was a previous fix for
thumb mode in a separate commit. The commit for thumb mode
added a test in a separate file because it would otherwise fail
for arm. This commit moves the thumb test back into the prefetch.ll
file and adds the corresponding arm test.
Differential Revision: http://llvm-reviews.chandlerc.com/D2622
llvm-svn: 200248
If a complex expression was passed to the .word directive and the first part of
the directive failed to parse, a secondary diagnostic would be produced that
would clutter the error diagnostics. Improve the diagnostics by consuming the
remainder of the statement.
llvm-svn: 200160
This has a few advantages:
* Only targets that use a MCTargetStreamer have to worry about it.
* There is never a MCTargetStreamer without a MCStreamer, so we can use a
reference.
* A MCTargetStreamer can talk to the MCStreamer in its constructor.
llvm-svn: 200129
There is no inline asm in a .s file. Therefore, there should be no logic to
handle it in the streamer. Inline asm only exists in bitcode files, so the
logic can live in the (long misnamed) AsmPrinter class.
llvm-svn: 200011
Originally, BLX was passed as operand #0 in MachineInstr and as operand
#2 in MCInst. But now, it's operand #2 in both cases.
This patch also removes unnecessary FileCheck in the test case added by r199127.
llvm-svn: 199928
With constant-sharing, litpool loads consume 4 + N*2 bytes of code, but
movw/movt pairs consume 8*N. This means litpools are better than movw/movt even
with just one use. Other materialisation strategies can still be better though,
so the logic is a little odd.
llvm-svn: 199891
This patch restores the ARM mode if the user's inline assembly
does not. In the object streamer, it ensures that instructions
following the inline assembly are encoded correctly and that
correct mapping symbols are emitted. For the asm streamer, it
emits a .arm or .thumb directive.
This patch does not ensure that the inline assembly contains
the ADR instruction to switch modes at runtime.
The problem we need to solve is code like this:
int foo(int a, int b) {
int r = a + b;
asm volatile(
".align 2 \n"
".arm \n"
"add r0,r0,r0 \n"
: : "r"(r));
return r+1;
}
If we compile this function in thumb mode then the inline assembly
will switch to arm mode. We need to make sure that we switch back to
thumb mode after emitting the inline assembly or we will incorrectly
encode the instructions that follow (i.e. the assembly instructions
for return r+1).
Based on patch by David Peixotto
Change-Id: Ib57f6d2d78a22afad5de8693fba6230ff56ba48b
llvm-svn: 199818
This implements the unwind_raw directive for the ARM IAS. The unwind_raw
directive takes the form of a stack offset value followed by one or more bytes
representing the opcodes to be emitted. The opcode emitted will interpreted as
if it were assembled by the opcode assembler via the standard unwinding
directives.
Thanks to Logan Chien for an extra test!
llvm-svn: 199707
The .personalityindex directive is equivalent to the .personality directive with
the ARM EABI personality with the specific index (0, 1, 2). Both of these
directives indicate personality routines, so enhance the personality directive
handling to take into account personalityindex.
Bonus fix: flush the UnwindContext at the beginning of a new function.
Thanks to Logan Chien for additional tests!
llvm-svn: 199706
optional DWARF sections, so compiling with -g does not result in
different code being generated for PC-relative loads.
This is reapplying a diet r197922 (__TEXT-only).
llvm-svn: 199681
Ensure that the tag types are reflected on a replacement. This is particularly
important for the compatibility tag which has multiple representations where the
last definition wins.
llvm-svn: 199577
This moves the ARM build attributes definitions and support routines into the
Support library. The support routines simply permit the conversion of the value
to and from a string representation.
The movement is prompted in order to permit access to the constants and string
representations from readobj in order to facilitate decoding of the attributes
section.
llvm-svn: 199575
Fix MLA defs to use register class GPRnopc.
Add encoding tests for multiply instructions.
(Alias for MUL/SMLAL/UMLAL added by r199026.)
Patch by Zhaoshi.
llvm-svn: 199491
When expanding neon pseudo stores, it may miss the implicit uses of sub
regs, which may cause post RA scheduler reorder instructions that
breakes anti dependency.
For example:
VST1d64QPseudo %R0<kill>, 16, %Q9_Q10, pred:14, pred:%noreg
will be expanded to
VST1d64Q %R0<kill>, 16, %D18, pred:14, pred:%noreg;
An instruction that defines %D20 may be scheduled before the store by
mistake.
This patches adds implicit uses for such case. For the example above, it
emits:
VST1d64Q %R0<kill>, 8, %D18, pred:14, pred:%noreg, %Q9_Q10<imp-use>
llvm-svn: 199282
The changes caused by folding an sp-adjustment into a "pop" previously
disrupted the forward search for the final real instruction in a
terminating block. This switches to a backward search (skipping debug
instrs).
This fixes PR18399.
Patch by Zhaoshi.
llvm-svn: 199266
The already allocatable DPair superclass contains odd-even D register
pair in addition to the even-odd pairs in the QPR register class. There
is no reason to constrain the set of D register pairs that can be used
for NEON values. Any NEON instructions that require a Q register will
automatically constrain the register class to QPR.
The allocation order for DPair begins with the QPR registers, so
register allocation is unlikely to change much.
llvm-svn: 199186
This will allow it to be called from target independent parts of the main
streamer that don't know if there is a registered target streamer or not. This
in turn will allow targets to perform extra actions at specified points in the
interface: add extra flags for some labels, extra work during finalization, etc.
llvm-svn: 199174
The issue is caused when Post-RA scheduler reorders a bundle instruction
(IT block). However, it only flips the CPSR liveness of the bundle instruction,
leaves the instructions inside the bundle unchanged, which causes inconstancy and crashes
Thumb2SizeReduction.cpp::ReduceMBB().
llvm-svn: 199127
Previously we only used GPR for the destination placeholder in "ldr rD, [pc,
incorrect codegen under the integrated assembler.
This should fix both issues (which probably only affect MachO targets at the
moment).
rdar://problem/15800156
llvm-svn: 199108
The target specific parser should return `false' if the target AsmParser handles
the directive, and `true' if the generic parser should handle the directive.
Many of the target specific directive handlers would `return Error' which does
not follow these semantics. This change simply changes the target specific
routines to conform to the semantis of the ParseDirective correctly.
Conformance to the semantics improves diagnostics emitted for the invalid
directives. X86 is taken as a sample to ensure that multiple diagnostics are
not presented for a single error.
llvm-svn: 199068
An improper qualifier would result in a superfluous error due to the parser not
consuming the remainder of the statement. Simply consume the remainder of the
statement to avoid the error.
llvm-svn: 199035
The implicit immediate 0 forms are assembly aliases, not distinct instruction
encodings. Fix the initial implementation introduced in r198914 to an alias to
avoid two separate instruction definitions for the same encoding.
An InstAlias is insufficient in this case as the necessary due to the need to
add a new additional operand for the implicit zero. By using the AsmPsuedoInst,
fall back to the C++ code to transform the instruction to the equivalent
_POST_IMM form, inserting the additional implicit immediate 0.
llvm-svn: 199032
A 32-bit immediate value can be formed from a constant expression and loaded
into a register. Add support to emit this into an object file. Because this
value is a constant, a relocation must *not* be produced for it.
llvm-svn: 199023
The disassembler would no longer be able to disambiguage between the two
variants (explicit immediate #0 vs implicit, omitted #0) for the ldrt, strt,
ldrbt, strbt mnemonics as both versions indicated the disassembler routine.
llvm-svn: 198944