Add a feature to `EnumAttr` definition to generate
specialized Attribute class for the particular enumeration.
This class will inherit `StringAttr` or `IntegerAttr` and
will override `classof` and `getValue` methods.
With this class the enumeration predicate can be checked with simple
RTTI calls (`isa`, `dyn_cast`) and it will return the typed enumeration
directly instead of raw string/integer.
Based on the following discussion:
https://llvm.discourse.group/t/rfc-add-enum-attribute-decorator-class/2252
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97836
Currently, vector.contract joins the intermediate result and the accumulator
argument (of ranks K) using summation. We desire more joining operations ---
such as max --- to help vector.contract express reductions. This change extends
Vector_ContractionOp to take an optional attribute (called "kind", of enum type
CombiningKind) specifying the joining operation to be add/mul/min/max for int/fp
, and and/or/xor for int only. By default this attribute has value "add".
To implement this we also need to extend vector.outerproduct, since
vector.contract gets transformed to vector.outerproduct (and that to
vector.fma). The extension for vector.outerproduct is also an optional kind
attribute that uses the same enum type and possible values. The default is
"add". In case of max/min we transform vector.outerproduct to a combination of
compare and select.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D93280
Right now constraint/predicate traits/etc. use their "description" field as a one line human readable string. This breaks the current convention, by which a "description" may be multi-line. This revision renames the "description" field in these cases to "summary" which matches what the string is actually used as. This also unbreaks the use of TypeDefs(and eventually AttrDefs) in conjunction with existing type constraint facilities like `Optional`.
Differential Revision: https://reviews.llvm.org/D94133
Using fully qualified names wherever possible avoids ambiguous class and function names. This is a follow-up to D82371.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D82471
Summary:
This revision adds generation of two utility methods during EnumGen:
```
llvm::Optional<EnumType> symbolizeEnum<EnumType>(llvm::StringRef)
<stringifyResult> stringifyEnum(EnumType);
```
This provides a generic interface for stringifying/symbolizing any enum that can be used in a template environment.
Differential Revision: https://reviews.llvm.org/D77937
Summary:
In some cases, one may want to use different names for C++ symbol of an
enumerand from its string representation. In particular, in the LLVM dialect
for, e.g., Linkage, we would like to preserve the same enumerand names as LLVM
API and the same textual IR form as LLVM IR, yet the two are different
(CamelCase vs snake_case with additional limitations on not being a C++
keyword).
Modify EnumAttrCaseInfo in OpBase.td to include both the integer value and its
string representation. By default, this representation is the same as C++
symbol name. Introduce new IntStrAttrCaseBase that allows one to use different
names. Exercise it for LLVM Dialect Linkage attribute. Other attributes will
follow as separate changes.
Differential Revision: https://reviews.llvm.org/D73362
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
BitEnumAttr is a mechanism for modelling attributes whose value is
a bitfield. It should not be scoped to the SPIR-V dialect and can
be used by other dialects too.
This CL is mostly shuffling code around and adding tests and docs.
Functionality changes are:
* Fixed to use `getZExtValue()` instead of `getSExtValue()` when
getting the value from the underlying IntegerAttr for a case.
* Changed to auto-detect whether there is a case whose value is
all bits unset (i.e., zero). If so handle it specially in all
helper methods.
PiperOrigin-RevId: 277964926
Certain enum classes in SPIR-V, like function/loop control and memory
access, are bitmasks. This CL introduces a BitEnumAttr to properly
model this and drive auto-generation of verification code and utility
functions. We still store the attribute using an 32-bit IntegerAttr
for minimal memory footprint and easy (de)serialization. But utility
conversion functions are adjusted to inspect each bit and generate
"|"-concatenated strings for the bits; vice versa.
Each such enum class has a "None" case that means no bit is set. We
need special handling for "None". Because of this, the logic is not
general anymore. So right now the definition is placed in the SPIR-V
dialect. If later this turns out to be useful for other dialects,
then we can see how to properly adjust it and move to OpBase.td.
Added tests for SPV_MemoryAccess to check and demonstrate.
PiperOrigin-RevId: 269350620
In ODS, right now we use StringAttrs to emulate enum attributes. It is
suboptimal if the op actually can and wants to store the enum as a
single integer value; we are paying extra cost on storing and comparing
the attribute value.
This CL introduces a new enum attribute subclass that are backed by
IntegerAttr. The downside with IntegerAttr-backed enum attributes is
that the assembly form now uses integer values, which is less obvious
than the StringAttr-backed ones. However, that can be remedied by
defining custom assembly form with the help of the conversion utility
functions generated via EnumsGen.
Choices are given to the dialect writers to decide which one to use for
their enum attributes.
PiperOrigin-RevId: 255935542
This CL adds the basic SPIR-V serializer and deserializer for converting
SPIR-V module into the binary format and back. Right now only an empty
module with addressing model and memory model is supported; (de)serialize
other components will be added gradually with subsequent CLs.
The purpose of this library is to enable importing SPIR-V binary modules
to run transformations on them and exporting SPIR-V modules to be consumed
by execution environments. The focus is transformations, which inevitably
means changes to the binary module; so it is not designed to be a general
tool for investigating the SPIR-V binary module and does not guarantee
roundtrip equivalence (at least for now).
PiperOrigin-RevId: 254473019
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.html#OpTypeImage.
Add new enums to describe Image dimensionality, Image Depth, Arrayed
information, Sampling, Sampler User information, and Image format.
Doesn's support the Optional Access qualifier at this stage
Fix Enum generator for tblgen to add "_" at the beginning if the enum
starts with a number.
PiperOrigin-RevId: 254091423
Enum attributes can be defined using `EnumAttr`, which requires all its cases
to be defined with `EnumAttrCase`. To facilitate the interaction between
`EnumAttr`s and their C++ consumers, add a new EnumsGen TableGen backend
to generate a few common utilities, including an enum class, `llvm::DenseMapInfo`
for the enum class, conversion functions from/to strings.
This is controlled via the `-gen-enum-decls` and `-gen-enum-defs` command-line
options of `mlir-tblgen`.
PiperOrigin-RevId: 252209623