This commit introduced a cyclic dependency:
Memref dialect depends on Standard because it used ConstantIndexOp.
Std depends on the MemRef dialect in its EDSC/Intrinsics.h
Working on a fix.
This reverts commit 8aa6c3765b.
Create the memref dialect and move several dialect-specific ops without
dependencies to other ops from std dialect to this dialect.
Moved ops:
AllocOp -> MemRef_AllocOp
AllocaOp -> MemRef_AllocaOp
DeallocOp -> MemRef_DeallocOp
MemRefCastOp -> MemRef_CastOp
GetGlobalMemRefOp -> MemRef_GetGlobalOp
GlobalMemRefOp -> MemRef_GlobalOp
PrefetchOp -> MemRef_PrefetchOp
ReshapeOp -> MemRef_ReshapeOp
StoreOp -> MemRef_StoreOp
TransposeOp -> MemRef_TransposeOp
ViewOp -> MemRef_ViewOp
The roadmap to split the memref dialect from std is discussed here:
https://llvm.discourse.group/t/rfc-split-the-memref-dialect-from-std/2667
Differential Revision: https://reviews.llvm.org/D96425
Depends On D95000
Move async.execute outlining and async -> async.runtime lowering into the separate Async transformation pass
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D95311
Instead of using llvm.call operations to call LLVM coro intrinsics use Coro operations from the LLVM dialect.
(This was reviewed as a part of https://reviews.llvm.org/D94923 but was lost in arc land from local branch)
Differential Revision: https://reviews.llvm.org/D95405
[NFC] No new functionality, mostly a cleanup and one more abstraction level between Async and LLVM IR.
Instead of lowering from Async to LLVM coroutines and Async Runtime API in one shot, do it progressively via async.coro and async.runtime operations.
1. Lower from async to async.runtime/coro (e.g. async.execute to function with coro setup and runtime calls)
2. Lower from async.runtime/coro to LLVM intrinsics and runtime API calls
Intermediate coro/runtime operations will allow to run transformations on a higher level IR and do not try to match IR based on the LLVM::CallOp properties.
Although async.coro is very close to LLVM coroutines, it is not exactly the same API, instead it is optimized for usability in async lowering, and misses a lot of details that are present in @llvm.coro intrinsic.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D94923
Continue the convergence between LLVM dialect and built-in types by replacing
the bfloat, half, float and double LLVM dialect types with their built-in
counterparts. At the API level, this is a direct replacement. At the syntax
level, we change the keywords to `bf16`, `f16`, `f32` and `f64`, respectively,
to be compatible with the built-in type syntax. The old keywords can still be
parsed but produce a deprecation warning and will be eventually removed.
Depends On D94178
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94179
1. Add new methods to Async runtime API to support yielding async values
2. Add lowering from `async.yield` with value payload to the new runtime API calls
`async.value` lowering requires that payload type is convertible to LLVM and supported by `llvm.mlir.cast` (DialectCast) operation.
Reviewed By: csigg
Differential Revision: https://reviews.llvm.org/D93592
Depends On D89963
**Automatic reference counting algorithm outline:**
1. `ReturnLike` operations forward the reference counted values without
modifying the reference count.
2. Use liveness analysis to find blocks in the CFG where the lifetime of
reference counted values ends, and insert `drop_ref` operations after
the last use of the value.
3. Insert `add_ref` before the `async.execute` operation capturing the
value, and pairing `drop_ref` before the async body region terminator,
to release the captured reference counted value when execution
completes.
4. If the reference counted value is passed only to some of the block
successors, insert `drop_ref` operations in the beginning of the blocks
that do not have reference coutned value uses.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D90716
Depends On D89958
1. Adds `async.group`/`async.awaitall` to group together multiple async tokens/values
2. Rewrite scf.parallel operation into multiple concurrent async.execute operations over non overlapping subranges of the original loop.
Example:
```
scf.for (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
"do_some_compute"(%i, %j): () -> ()
}
```
Converted to:
```
%c0 = constant 0 : index
%c1 = constant 1 : index
// Compute blocks sizes for each induction variable.
%num_blocks_i = ... : index
%num_blocks_j = ... : index
%block_size_i = ... : index
%block_size_j = ... : index
// Create an async group to track async execute ops.
%group = async.create_group
scf.for %bi = %c0 to %num_blocks_i step %c1 {
%block_start_i = ... : index
%block_end_i = ... : index
scf.for %bj = %c0 t0 %num_blocks_j step %c1 {
%block_start_j = ... : index
%block_end_j = ... : index
// Execute the body of original parallel operation for the current
// block.
%token = async.execute {
scf.for %i = %block_start_i to %block_end_i step %si {
scf.for %j = %block_start_j to %block_end_j step %sj {
"do_some_compute"(%i, %j): () -> ()
}
}
}
// Add produced async token to the group.
async.add_to_group %token, %group
}
}
// Await completion of all async.execute operations.
async.await_all %group
```
In this example outer loop launches inner block level loops as separate async
execute operations which will be executed concurrently.
At the end it waits for the completiom of all async execute operations.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D89963
- Change syntax for FuncOp to be `func <visibility>? @name` instead of printing the
visibility in the attribute dictionary.
- Since printFunctionLikeOp() and parseFunctionLikeOp() are also used by other
operations, make the "inline visibility" an opt-in feature.
- Updated unit test to use and check the new syntax.
Differential Revision: https://reviews.llvm.org/D90859
This reverts commit 4986d5eaff with
proper patches to CMakeLists.txt:
- Add MLIRAsync as a dependency to MLIRAsyncToLLVM
- Add Coroutines as a dependency to MLIRExecutionEngine
Lower from Async dialect to LLVM by converting async regions attached to `async.execute` operations into LLVM coroutines (https://llvm.org/docs/Coroutines.html):
1. Outline all async regions to functions
2. Add LLVM coro intrinsics to mark coroutine begin/end
3. Use MLIR conversion framework to convert all remaining async types and ops to LLVM + Async runtime function calls
All `async.await` operations inside async regions converted to coroutine suspension points. Await operation outside of a coroutine converted to the blocking wait operations.
Implement simple runtime to support concurrent execution of coroutines.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D89292