Rework the TTI cache and software prefetching APIs to prepare for the
introduction of a general system model. Changes include:
- Marking existing interfaces const and/or override as appropriate
- Adding comments
- Adding BasicTTIImpl interfaces that delegate to a subtarget
implementation
- Adding a default "no information" subtarget implementation
Only a handful of targets use these interfaces currently: AArch64,
Hexagon, PPC and SystemZ. AArch64 already has a custom subtarget
implementation, so its custom TTI implementation is migrated to use
the new facilities in BasicTTIImpl to invoke its custom subtarget
implementation. The custom TTI implementations continue to exist for
the other targets with this change. They are not moved over to
subtarget-based implementations.
The end goal is to have the default subtarget implementation defer to
the system model defined by the target. With this change, the default
subtarget implementation essentially returns "no information" for
these interfaces. None of the existing users of TTI will hit that
implementation because they define their own custom TTI
implementations and won't use the BasicTTIImpl implementations.
Once system models are in place for the targets that use these
interfaces, their custom TTI implementations can be removed.
Differential Revision: https://reviews.llvm.org/D63614
llvm-svn: 365676
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
Implement necessary target hooks to enable MachinePipeliner for P9 only.
The pass is off by default, can be enabled with -ppc-enable-pipeliner for P9.
Differential Revision: https://reviews.llvm.org/D62164
llvm-svn: 363085
As suggested by @arsenm on D63075 - this adds a TargetLowering::allowsMemoryAccess wrapper that takes a Load/Store node's MachineMemOperand to handle the AddressSpace/Alignment arguments and will also implicitly handle the MachineMemOperand::Flags change in D63075.
llvm-svn: 363048
This reverts r362990 (git commit 374571301d)
This was causing linker warnings on Darwin:
ld: warning: direct access in function 'llvm::initializeEvexToVexInstPassPass(llvm::PassRegistry&)'
from file '../../lib/libLLVMX86CodeGen.a(X86EvexToVex.cpp.o)' to global weak symbol
'void std::__1::__call_once_proxy<std::__1::tuple<void* (&)(llvm::PassRegistry&),
std::__1::reference_wrapper<llvm::PassRegistry>&&> >(void*)' from file '../../lib/libLLVMCore.a(Verifier.cpp.o)'
means the weak symbol cannot be overridden at runtime. This was likely caused by different translation
units being compiled with different visibility settings.
llvm-svn: 363028
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
llvm-svn: 362990
HexagonInstPrinter.cpp was not using any APIs from HexagonAsmPrinter.h.
Doing so is problematic from include-what-you-use perspective, but it is
also a layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362389
HexagonMCInstrInfo.cpp was not using any APIs from Hexagon.h. Doing so
is problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362387
HexagonMCCodeEmitter.cpp was not using any APIs from Hexagon.h. Doing
so is problematic from include-what-you-use perspective, but it is also
a layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362386
HexagonMCCompound.cpp was not using any APIs from Hexagon.h. Doing so
is problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362385
HexagonShuffler.cpp was not using any APIs from Hexagon.h, and was only
including it for transitive dependencies. Doing so is problematic from
include-what-you-use perspective, but it is also a layering issue (it
creates a dependency cycle between the primary Hexagon target library
and the MCTargetDesc library).
llvm-svn: 362384
HexagonMCChecker.cpp was not using any APIs from Hexagon.h. Doing so is
problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362383
HexagonMCTargetDesc.cpp was not using any APIs from Hexagon.h. Doing so
is problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362382
HexagonMCShuffler.cpp was not using any APIs from Hexagon.h. Doing so
is problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362381
HexagonELFObjectWriter.cpp was not using any APIs from Hexagon.h, and
was only including it for transitive dependencies. Doing so is
problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362376
HexagonAsmBackend.cpp was not using any APIs from Hexagon.h. Doing so
is problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362372
HexagonAsmParser.cpp was not using any APIs from Hexagon.h. Doing so is
problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the AsmParser library).
llvm-svn: 362370
HexagonShuffler.h was not using any APIs from Hexagon.h, and was only
including it for transitive dependencies. Doing so is problematic from
include-what-you-use perspective, but it is also a layering issue (it
creates a dependency cycle between the primary Hexagon target library
and the MCTargetDesc library).
llvm-svn: 362369
Keep it optional in cases this is ever needed in some global
context. Currently it's only used for getting an upper bound inline
asm code size.
For AMDGPU, gfx10 increases the maximum instruction size to
20-bytes. This avoids penalizing older subtargets when estimating code
size, and making some annoying branch relaxation test adjustments.
llvm-svn: 361405
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360724
The MachineFunction wasn't used in getOptimalMemOpType, but more importantly,
this allows reuse of findOptimalMemOpLowering that is calling getOptimalMemOpType.
This is the groundwork for the changes in D59766 and D59787, that allows
implementation of TTI::getMemcpyCost.
Differential Revision: https://reviews.llvm.org/D59785
llvm-svn: 359537
Summary:
Targets like ARM, MSP430, PPC, and SystemZ have complex behavior when
printing the address of a MachineOperand::MO_GlobalAddress. Move that
handling into a new overriden method in each base class. A virtual
method was added to the base class for handling the generic case.
Refactors a few subclasses to support the target independent %a, %c, and
%n.
The patch also contains small cleanups for AVRAsmPrinter and
SystemZAsmPrinter.
It seems that NVPTXTargetLowering is possibly missing some logic to
transform GlobalAddressSDNodes for
TargetLowering::LowerAsmOperandForConstraint to handle with "i" extended
inline assembly asm constraints.
Fixes:
- https://bugs.llvm.org/show_bug.cgi?id=41402
- https://github.com/ClangBuiltLinux/linux/issues/449
Reviewers: echristo, void
Reviewed By: void
Subscribers: void, craig.topper, jholewinski, dschuff, jyknight, dylanmckay, sdardis, nemanjai, javed.absar, sbc100, jgravelle-google, eraman, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, jrtc27, atanasyan, jsji, llvm-commits, kees, tpimh, nathanchance, peter.smith, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60887
llvm-svn: 359337
Summary:
The basic idea here is to make it possible to use
MachineInstr::mayAlias also when the MachineInstr
is const (or the "Other" MachineInstr is const).
The addition of const in MachineInstr::mayAlias
then rippled down to the need for adding const
in several other places, such as
TargetTransformInfo::getMemOperandWithOffset.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, MatzeB, arsenm, jvesely, nhaehnle, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60856
llvm-svn: 358744
Summary:
None of these derived classes do anything that the base class cannot.
If we remove these case statements, then the base class can handle them
just fine.
Reviewers: peter.smith, echristo
Reviewed By: echristo
Subscribers: nemanjai, javed.absar, eraman, kristof.beyls, hiraditya, kbarton, jsji, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60803
llvm-svn: 358603
The Hexagon Vector Loop Carried Reuse pass was allowing reuse between
two shufflevectors with different masks. The reason is that the masks
are not instruction objects, so the code that checks each operand
just skipped over the operands.
This patch fixes the bug by checking if the operands are the same
when they are not instruction objects. If the objects are not the
same, then the code assumes that reuse cannot occur.
Differential Revision: https://reviews.llvm.org/D60019
llvm-svn: 358292
Summary:
The InlineAsm::AsmDialect is only required for X86; no architecture
makes use of it and as such it gets passed around between arch-specific
and general code while being unused for all architectures but X86.
Since the AsmDialect is queried from a MachineInstr, which we also pass
around, remove the additional AsmDialect parameter and query for it deep
in the X86AsmPrinter only when needed/as late as possible.
This refactor should help later planned refactors to AsmPrinter, as this
difference in the X86AsmPrinter makes it harder to make AsmPrinter more
generic.
Reviewers: craig.topper
Subscribers: jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, llvm-commits, peter.smith, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60488
llvm-svn: 358101
Create method `optForNone()` testing for the function level equivalent of
`-O0` and refactor appropriately.
Differential revision: https://reviews.llvm.org/D59852
llvm-svn: 357638
This allows better code size for aarch64 floating point materialization
in a future patch.
Reviewers: evandro
Differential Revision: https://reviews.llvm.org/D58690
llvm-svn: 356389
For the design in question, overloads seem to be a much simpler and less subtle solution.
This removes ODR issues, and errors of the kind where code that uses the
specialization in question will accidentally and erroneously specialize
the primary template. This only "works" by accident; the program is
ill-formed NDR.
(Found with -Wundefined-func-template.)
Patch by Thomas Köppe!
Differential Revision: https://reviews.llvm.org/D58998
llvm-svn: 355880
AMDGPU target run out of Subtarget feature flags hitting the limit of 64.
AssemblerPredicates uses at most uint64_t for their representation.
At the same time CodeGen has exhausted this a long time ago and switched
to a FeatureBitset with the current limit of 192 bits.
This patch completes transition to the bitset for feature bits extending
it to asm matcher and MC code emitter.
Differential Revision: https://reviews.llvm.org/D59002
llvm-svn: 355839
As requested during review of D57601, be equally conservative for atomic MMOs as for volatile MMOs in all in tree backends. At the moment, all atomic MMOs are also volatile, but I'm about to change that.
Reviewed as part of https://reviews.llvm.org/D58490, with other backends still pending review.
llvm-svn: 354740
The trap instruction is intercepted by various runtime environments,
and instead of a crash it creates confusion.
This reapplies r354606 with a fix.
llvm-svn: 354611