The main issue being fixed here is that APCS targets handling a "byval align N"
parameter with N > 4 were miscounting what objects were where on the stack,
leading to FrameLowering setting the frame pointer incorrectly and clobbering
the stack.
But byval handling had grown over many years, and had multiple layers of cruft
trying to compensate for each other and calculate padding correctly. This only
really needs to be done once, in the HandleByVal function. Elsewhere should
just do what it's told by that call.
I also stripped out unnecessary APCS/AAPCS distinctions (now that Clang emits
byvals with the correct C ABI alignment), which simplified HandleByVal.
rdar://20095672
llvm-svn: 231959
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
We were making an attempt to do this by adding an extra callee-saved GPR (so
that there was an even number in the list), but when that failed we went ahead
and pushed anyway.
This had a couple of potential issues:
+ The .cfi directives we emit misplaced dN because they were based on
PrologEpilogInserter's calculation.
+ Unaligned stores can be less efficient.
+ Unaligned stores can actually fault (likely only an issue in niche cases,
but possible).
This adds a final explicit stack adjustment if all other options fail, so that
the actual locations of the registers match up with where they should be.
llvm-svn: 221320
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
This reverts r214893, re-applying r214881 with the test case relaxed a bit to
satiate the build bots.
POP on armv4t cannot be used to change thumb state (unilke later non-m-class
architectures), therefore we need a different return sequence that uses 'bx'
instead:
POP {r3}
ADD sp, #offset
BX r3
This patch also fixes an issue where the return value in r3 would get clobbered
for functions that return 128 bits of data. In that case, we generate this
sequence instead:
MOV ip, r3
POP {r3}
ADD sp, #offset
MOV lr, r3
MOV r3, ip
BX lr
http://reviews.llvm.org/D4748
llvm-svn: 214928
POP on armv4t cannot be used to change thumb state (unilke later non-m-class
architectures), therefore we need a different return sequence that uses 'bx'
instead:
POP {r3}
ADD sp, #offset
BX r3
This patch also fixes an issue where the return value in r3 would get clobbered
for functions that return 128 bits of data. In that case, we generate this
sequence instead:
MOV ip, r3
POP {r3}
ADD sp, #offset
MOV lr, r3
MOV r3, ip
BX lr
http://reviews.llvm.org/D4748
llvm-svn: 214881
The coalescer is very aggressive at propagating constraints on the register classes, and the register allocator doesn’t know how to split sub-registers later to recover. This patch provides an escape valve for targets that encounter this problem to limit coalescing.
This patch also implements such for ARM to lower register pressure when using lots of large register classes. This works around PR18825.
llvm-svn: 213078
This required untangling a mess of headers that included around.
This a recommit of r210953 with a fix for the removed accessor
for JITInfo.
llvm-svn: 211233
NaCl's ARM ABI uses 16 byte stack alignment, so set that in
ARMSubtarget.cpp.
Using 16 byte alignment exposes an issue in code generation in which a
varargs function leaves a 4 byte gap between the values of r1-r3 saved
to the stack and the following arguments that were passed on the
stack. (Previously, this code only needed to support 4 byte and 8
byte alignment.)
With this issue, llc generated:
varargs_func:
sub sp, sp, #16
push {lr}
sub sp, sp, #12
add r0, sp, #16 // Should be 20
stm r0, {r1, r2, r3}
ldr r0, .LCPI0_0 // Address of va_list
add r1, sp, #16
str r1, [r0]
bl external_func
Fix the bug by checking for "Align > 4". Also simplify the code by
using OffsetToAlignment(), and update comments.
Differential Revision: http://llvm-reviews.chandlerc.com/D2677
llvm-svn: 201497
ResolveFrameIndex had what appeared to be a very nasty hack for when the
frame-index referred to a callee-saved register. In this case it "adjusted" the
offset so that the address was correct if (and only if) the MachineInstr
immediately followed the respective push.
This "worked" for all forms of GPR & DPR but was only ever used to set the
frame pointer itself, and once this was put in a more sensible location the
entire state-tracking machinery it relied on became redundant. So I stripped
it.
The only wrinkle is that "add r7, sp, #0" might theoretically be slower (need
an actual ALU slot) compared to "mov r7, sp" so I added a micro-optimisation
that also makes emitARMRegUpdate and emitT2RegUpdate also work when NumBytes ==
0.
No test changes since there shouldn't be any functionality change.
llvm-svn: 194025
Introduction:
In case when stack alignment is 8 and GPRs parameter part size is not N*8:
we add padding to GPRs part, so part's last byte must be recovered at
address K*8-1.
We need to do it, since remained (stack) part of parameter starts from
address K*8, and we need to "attach" "GPRs head" without gaps to it:
Stack:
|---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
[ [padding] [GPRs head] ] [ ------ Tail passed via stack ------ ...
FIX:
Note, once we added padding we need to correct *all* Arg offsets that are going
after padded one. That's why we need this fix: Arg offsets were never corrected
before this patch. See new test-cases included in patch.
We also don't need to insert padding for byval parameters that are stored in GPRs
only. We need pad only last byval parameter and only in case it outsides GPRs
and stack alignment = 8.
Though, stack area, allocated for recovered byval params, must satisfy
"Size mod 8 = 0" restriction.
This patch reduces stack usage for some cases:
We can reduce ArgRegsSaveArea since inner N*4 bytes sized byval params my be
"packed" with alignment 4 in some cases.
llvm-svn: 182237
1. VarArgStyleRegisters: functionality that emits "store" instructions for byval regs moved out into separated method "StoreByValRegs". Before this patch VarArgStyleRegisters had confused use-cases. It was used for both variadic functions and for regular functions with byval parameters. In last case it created new stack-frame and registered it as VarArg frame, that is wrong.
This patch replaces VarArgsStyleRegisters usage for byval parameters with StoreByValRegs method.
2. In ARMMachineFunctionInfo, "get/setVarArgsRegSaveSize" was renamed to "get/setArgRegsSaveSize". By the same reason. Sometimes it was used for variadic functions, and sometimes for byval parameters in regular functions. Actually, this property means the size of registers, that keeps arguments, and thats why it was renamed.
3. In ARMISelLowering.cpp, ARMTargetLowering class, in methods computeRegArea and StoreByValRegs, VARegXXXXXX was renamed to ArgRegsXXXXXX still by the same reasons.
llvm-svn: 180774
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
ARM targets with NEON units have access to aligned vector loads and
stores that are potentially faster than unaligned operations.
Add support for spilling the callee-saved NEON registers to an aligned
stack area using 16-byte aligned NEON loads and store.
This feature is off by default, controlled by an -align-neon-spills
command line option.
llvm-svn: 147211
movw r0, :lower16:(L_foo$non_lazy_ptr-(LPC0_0+4))
movt r0, :upper16:(L_foo$non_lazy_ptr-(LPC0_0+4))
LPC0_0:
add r0, pc, r0
It's not yet enabled by default as some tests are failing. I suspect bugs in
down stream tools.
llvm-svn: 123619
between the high and low registers for prologue/epilogue code. This was
a Darwin-only thing that wasn't providing a realistic benefit anymore.
Combining the save areas simplifies the compiler code and results in better
ARM/Thumb2 codegen.
For example, previously we would generate code like:
push {r4, r5, r6, r7, lr}
add r7, sp, #12
stmdb sp!, {r8, r10, r11}
With this change, we combine the register saves and generate:
push {r4, r5, r6, r7, r8, r10, r11, lr}
add r7, sp, #12
rdar://8445635
llvm-svn: 114340
Also added a test case to check for the added benefit of this patch: it's optimizing away the unnecessary restore of sp from fp for some non-leaf functions.
llvm-svn: 110707
reserved, not available for general allocation. This eliminates all the
extra checks for Darwin.
This change also fixes the use of FP to access frame indices in leaf
functions and cleaned up some confusing code in epilogue emission.
llvm-svn: 110655
- This fixed a number of bugs in if-converter, tail merging, and post-allocation
scheduler. If-converter now runs branch folding / tail merging first to
maximize if-conversion opportunities.
- Also changed the t2IT instruction slightly. It now defines the ITSTATE
register which is read by instructions in the IT block.
- Added Thumb2 specific hazard recognizer to ensure the scheduler doesn't
change the instruction ordering in the IT block (since IT mask has been
finalized). It also ensures no other instructions can be scheduled between
instructions in the IT block.
This is not yet enabled.
llvm-svn: 106344
that is the case, whenever we use it as a scratch register, save it to R12
first and then restore it after the use.
This is a temporary and truly horrible workaround!
llvm-svn: 33999
spilled (if it is not already).
- If LR is spilled, use BL to implement far jumps. LR is not used as a GPR
in thumb mode so it can be clobbered if it is properly spilled / restored
in prologue / epilogue.
- If LR is force spilled but no far jump has been emitted, try undo'ing the
spill by:
push lr -> delete
pop pc -> bx lr
llvm-svn: 33650