To match an interface or trait, users currently have to use the `MatchAny` tag. This tag can be quite problematic for compile time for things like the canonicalizer, as the `MatchAny` patterns may get applied to *every* operation. This revision adds better support by bucketing interface/trait patterns based on which registered operations have them registered. This means that moving forward we will only attempt to match these patterns to operations that have this interface registered. Two simplify defining patterns that match traits and interfaces, two new utility classes have been added: OpTraitRewritePattern and OpInterfaceRewritePattern.
Differential Revision: https://reviews.llvm.org/D98986
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
Use `MLIR_LINALG_ODS_GEN` and `MLIR_LINALG_ODS_YAML_GEN` variables
instead of `MLIR_LINALG_ODS_GEN_EXE` and `MLIR_LINALG_ODS_YAML_GEN_EXE`.
The former are defined in PARENT SCOPE only, so the `if` condition
is never evaluates to `TRUE`.
The logic should be the following (taken from tblgen part):
1. `TOOL_NAME` - CACHE variable (default equal to target name).
User can override it to actual executable path.
2. `TOOL_NAME_EXE` - internal variable, initialized to `${TOOL_NAME}` first.
In case of cross-compilation (`LLVM_USE_HOST_TOOLS == TRUE`) if user
didn't set own path to native executable via `TOOL_NAME` variable,
CMake will create separate targets to build native tool and
will override `TOOL_NAME_EXE` to the executable produced by this target.
3. `TOOL_NAME_TARGET` - internal variable, which points to tool target name.
If the native tool is built as described above, it will point to the
target correspondant to that native tool.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D98025
Some variables are unused after D97383 landed. We should generate one symbol for one attrUse.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D97794
These warnings are raised when compiling with gcc due to either having too few or too many commas, or in the case of lldb, the possibility of a nullptr.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D97586
This enables this kind of construct in the DSL to generate a named op that is polymorphic over numeric type variables `T` and `U`, generating the correct arithmetic casts at construction time:
```
@tc_def_op
def polymorphic_matmul(A=TensorDef(T1, S.M, S.K),
B=TensorDef(T2, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True)):
implements(ContractionOpInterface)
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
```
Presently, this only supports type variables that are bound to the element type of one of the arguments, although a further extension that allows binding a type variable to an attribute would allow some more expressiveness and may be useful for some formulations. This is left to a future patch. In addition, this patch does not yet materialize the verifier support which ensures that types are bound correctly (for such simple examples, failing to do so will yield IR that fails verification, it just won't yet fail with a precise error).
Note that the full grid of extensions/truncation/int<->float conversions are supported, but many of them are lossy and higher level code needs to be mindful of numerics (it is not the job of this level).
As-is, this should be sufficient for most integer matmul scenarios we work with in typical quantization schemes.
Differential Revision: https://reviews.llvm.org/D97603
This also exposed a bug in Dialect loading where it was not correctly identifying identifiers that had the dialect namespace as a prefix.
Differential Revision: https://reviews.llvm.org/D97431
If one operand is not used in the formula, it will be considered a
shaped operand. And the result of indexing map of the operand will be the first
reduction dims.
Depends On D97383
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D97384
This will allow us to define select(pred, in, out) for TC ops, which is useful
for pooling ops.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D97312
* It was decided that this was the end of the line for the existing custom tc parser/generator, and this is the first step to replacing it with a declarative format that maps well to mathy source languages.
* One such source language is implemented here: https://github.com/stellaraccident/mlir-linalgpy/blob/main/samples/mm.py
* In fact, this is the exact source of the declarative `polymorphic_matmul` in this change.
* I am working separately to clean this python implementation up and add it to MLIR (probably as `mlir.tools.linalg_opgen` or equiv). The scope of the python side is greater than just generating named ops: the ops are callable and directly emit `linalg.generic` ops fully dynamically, and this is intended to be a feature for frontends like npcomp to define custom linear algebra ops at runtime.
* There is more work required to handle full type polymorphism, especially with respect to integer formulations, since they require more specificity wrt types.
* Followups to this change will bring the new generator to feature parity with the current one and delete the current. Roughly, this involves adding support for interface declarations and attribute symbol bindings.
Differential Revision: https://reviews.llvm.org/D97135
This revision takes advantage of the newly extended `ref` directive in assembly format
to allow better region handling for LinalgOps. Specifically, FillOp and CopyOp now build their regions explicitly which allows retiring older behavior that relied on specific op knowledge in both lowering to loops and vectorization.
This reverts commit 3f22547fd1 and reland 973e133b76 with a workaround for
a gcc bug that does not accept lambda default parameters:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59949
Differential Revision: https://reviews.llvm.org/D96598
This reverts commit 973e133b76.
It triggers an issue in gcc5 that require investigation, the build is
broken with:
/tmp/ccdpj3B9.s: Assembler messages:
/tmp/ccdpj3B9.s:5821: Error: symbol `_ZNSt17_Function_handlerIFvjjEUljjE2_E9_M_invokeERKSt9_Any_dataOjS6_' is already defined
/tmp/ccdpj3B9.s:5860: Error: symbol `_ZNSt14_Function_base13_Base_managerIUljjE2_E10_M_managerERSt9_Any_dataRKS3_St18_Manager_operation' is already defined
This revision takes advantage of the newly extended `ref` directive in assembly format
to allow better region handling for LinalgOps. Specifically, FillOp and CopyOp now build their regions explicitly which allows retiring older behavior that relied on specific op knowledge in both lowering to loops and vectorization.
Differential Revision: https://reviews.llvm.org/D96598
Indexing maps for named ops can reference attributes so that
we can synthesize the indexing map dynamically. This supports
cases like strides for convolution ops. However, it does cause
an issue: now the indexing_maps() function call is dependent
on those attributes.
Linalg ops inherit LinalgOpInterfaceTraits, which calls
verifyStructuredOpInterface() to verify the interface.
verifyStructuredOpInterface() further calls indexing_maps().
Note that trait verification is done before the op itself,
where ODS generates the verification for those attributes.
So we can have indexing_maps() referencing non-existing or
invalid attribute, before the ODS-generated verification
kick in.
There isn't a dependency handling mechansim for traits.
This commit adds new interface methods to query whether an
op hasDynamicIndexingMaps() and then perform
verifyIndexingMapRequiredAttributes() in
verifyStructuredOpInterface() to handle the dependency issue.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D96297
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.
Differential Revision: https://reviews.llvm.org/D95841
This revision takes advantage of recent extensions to vectorization to refactor contraction detection into a bona fide Linalg interface.
The mlit-linalg-ods-gen parser is extended to support adding such interfaces.
The detection that was originally enabling vectorization is refactored to serve as both a test on a generic LinalgOp as well as to verify ops that declare to conform to that interface.
This is plugged through Linalg transforms and strategies but it quickly becomes evident that the complexity and rigidity of the C++ class based templating does not pay for itself.
Therefore, this revision changes the API for vectorization patterns to get rid of templates as much as possible.
Variadic templates are relegated to the internals of LinalgTransformationFilter as much as possible and away from the user-facing APIs.
It is expected other patterns / transformations will follow the same path and drop as much C++ templating as possible from the class definition.
Differential revision: https://reviews.llvm.org/D95973
This separation improves the layering and paves the way for more interfaces coming up in the future.
Differential revision: https://reviews.llvm.org/D95941
Use cross-compilation approach for `mlir-linalg-ods-gen` application
similar to TblGen tools.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D94598
This commit adds support to generate an additional builder for
each named op that has attributes. This gives better experience
when creating the named ops.
Along the way adds support for i64.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D94733
This commit adds support for parsing attribute uses in indexing
maps. These attribute uses are represented as affine symbols in
the resultant indexing maps because we can only know their
concrete value (which are coming from op attributes and are
constants) for specific op instances. The `indxing_maps()`
calls are synthesized to read these attributes and create affine
constants to replace the placeholder affine symbols and simplify.
Depends on D94240
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D94335
With this, now we can specify a list of attributes on named ops
generated from the spec. The format is defined as
```
attr-id ::= bare-id (`?`)?
attr-typedef ::= type (`[` `]`)?
attr-def ::= attr-id `:` attr-typedef
tc-attr-def ::= `attr` `(` attr-def-list `)`
tc-def ::= `def` bare-id
`(`tensor-def-list`)` `->` `(` tensor-def-list`)`
(tc-attr-def)?
```
For example,
```
ods_def<SomeCppOp>
def some_op(...) -> (...)
attr(
f32_attr: f32,
i32_attr: i32,
array_attr : f32[],
optional_attr? : f32
)
```
where `?` means optional attribute and `[]` means array type.
Reviewed By: hanchung, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D94240
This reverts commit df86f15f0c.
The gcc-5 build was broken by this change:
mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-gen.cpp:1275:77: required from here
/usr/include/c++/5/ext/new_allocator.h:120:4: error: no matching function for call to 'std::pair<const std::__cxx11::basic_string<char>, {anonymous}::TCParser::RegisteredAttr>::pair(llvm::StringRef&, {anonymous}::TCParser::RegisteredAttr'
With this, now we can specify a list of attributes on named ops
generated from the spec. The format is defined as
```
attr-id ::= bare-id (`?`)?
attr-typedef ::= type (`[` `]`)?
attr-def ::= attr-id `:` attr-typedef
tc-attr-def ::= `attr` `(` attr-def-list `)`
tc-def ::= `def` bare-id
`(`tensor-def-list`)` `->` `(` tensor-def-list`)`
(tc-attr-def)?
```
For example,
```
ods_def<SomeCppOp>
def some_op(...) -> (...)
attr(
f32_attr: f32,
i32_attr: i32,
array_attr : f32[],
optional_attr? : f32
)
```
where `?` means optional attribute and `[]` means array type.
Reviewed By: hanchung, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D94240
This revision drops init_tensor arguments from Linalg on tensors and instead uniformizes the output buffers and output tensors to be consistent.
This significantly simplifies the usage of Linalg on tensors and is a stepping stone for
its evolution towards a mixed tensor and shape abstraction discussed in https://llvm.discourse.group/t/linalg-and-shapes/2421/19.
Differential Revision: https://reviews.llvm.org/D93469
This commit starts a new pass and patterns for converting Linalg
named ops to generic ops. This enables us to leverage the flexbility
from generic ops during transformations. Right now only linalg.conv
is supported; others will be added when useful.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D91357
The LinalgDependenceGraph and alias analysis provide the necessary analysis for the Linalg fusion on buffers case.
However this is not enough for linalg on tensors which require proper memory effects to play nicely with DCE and other transformations.
This revision adds side effects to Linalg ops that were previously missing and has 2 consequences:
1. one example in the copy removal pass now fails since the linalg.generic op has side effects and the pass does not perform alias analysis / distinguish between reads and writes.
2. a few examples in fusion-tensor.mlir need to return the resulting tensor otherwise DCE automatically kicks in as part of greedy pattern application.
Differential Revision: https://reviews.llvm.org/D90762
A recent commit introduced a new syntax for specifying builder arguments in
ODS, which is better amenable to automated processing, and deprecated the old
form. Transition all dialects as well as Linalg ODS generator to use the new
syntax.
Add a deprecation notice to ODS generator.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D90038
This revision reduces the number of places that specific information needs to be modified when adding new named Linalg ops.
Differential Revision: https://reviews.llvm.org/D89223
This reverts commit e9b87f43bd.
There are issues with macros generating macros without an obvious simple fix
so I'm going to revert this and try something different.
New projects (particularly out of tree) have a tendency to hijack the existing
llvm configuration options and build targets (add_llvm_library,
add_llvm_tool). This can lead to some confusion.
1) When querying a configuration variable, do we care about how LLVM was
configured, or how these options were configured for the out of tree project?
2) LLVM has lots of defaults, which are easy to miss
(e.g. LLVM_BUILD_TOOLS=ON). These options all need to be duplicated in the
CMakeLists.txt for the project.
In addition, with LLVM Incubators coming online, we need better ways for these
incubators to do things the "LLVM way" without alot of futzing. Ideally, this
would happen in a way that eases importing into the LLVM monorepo when
projects mature.
This patch creates some generic infrastructure in llvm/cmake/modules and
refactors MLIR to use this infrastructure. This should expand to include
add_xxx_library, which is by far the most complicated bit of building a
project correctly, since it has to deal with lots of shared library
configuration bits. (MLIR currently hijacks the LLVM infrastructure for
building libMLIR.so, so this needs to get refactored anyway.)
Differential Revision: https://reviews.llvm.org/D85140
- Change the default builders to use TypeRange instead of ArrayRef<Type>
- Custom builders defined in LinalgStructuredOps now conflict with the default
separate param ones, but the default collective params one is still needed. Resolve
this by replicating the collective param builder as a custom builder and skipping
the generation of default builders for these ops.
Differential Revision: https://reviews.llvm.org/D87926
This revision allows representing a reduction at the level of linalg on tensors for named ops. When a structured op has a reduction and returns tensor(s), new conventions are added and documented.
As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:
```
linalg.matmul ins(%a, %b : memref<?x?xf32>, tensor<?x?xf32>)
outs(%c : memref<?x?xf32>)
```
, whereas the syntax for a `linalg.matmul` returning a new tensor is:
```
%d = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
init(%c : memref<?x?xf32>)
-> tensor<?x?xf32>
```
Other parts of linalg will be extended accordingly to allow mixed buffer/tensor semantics in the presence of reductions.
This revision refactors and cleans up a bunch of things to simplify StructuredOpInterface
before work can proceed on Linalg on tensors:
- break out pieces of the StructuredOps trait that are part of the StructuredOpInterface,
- drop referenceIterators and referenceIndexingMaps that end up being more confusing than useful,
- drop NamedStructuredOpTrait