This patch updates the Kaleidoscope and BuildingAJIT tutorial series (chapter
1-4) to OrcV2. Chapter 5 of the BuildingAJIT series is removed -- it will be
re-instated once we have in-tree support for out-of-process JITing.
This patch only updates the tutorial code, not the text. Patches welcome for
that, otherwise I will try to update it in a few weeks.
This patch introduces new APIs to support resource tracking and removal in Orc.
It is intended as a thread-safe generalization of the removeModule concept from
OrcV1.
Clients can now create ResourceTracker objects (using
JITDylib::createResourceTracker) to track resources for each MaterializationUnit
(code, data, aliases, absolute symbols, etc.) added to the JIT. Every
MaterializationUnit will be associated with a ResourceTracker, and
ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib
has a default ResourceTracker that will be used for MaterializationUnits added
to that JITDylib if no ResourceTracker is explicitly specified.
Two operations can be performed on ResourceTrackers: transferTo and remove. The
transferTo operation transfers tracking of the resources to a different
ResourceTracker object, allowing ResourceTrackers to be merged to reduce
administrative overhead (the source tracker is invalidated in the process). The
remove operation removes all resources associated with a ResourceTracker,
including any symbols defined by MaterializationUnits associated with the
tracker, and also invalidates the tracker. These operations are thread safe, and
should work regardless of the the state of the MaterializationUnits. In the case
of resource transfer any existing resources associated with the source tracker
will be transferred to the destination tracker, and all future resources for
those units will be automatically associated with the destination tracker. In
the case of resource removal all already-allocated resources will be
deallocated, any if any program representations associated with the tracker have
not been compiled yet they will be destroyed. If any program representations are
currently being compiled then they will be prevented from completing: their
MaterializationResponsibility will return errors on any attempt to update the
JIT state.
Clients (usually Layer writers) wishing to track resources can implement the
ResourceManager API to receive notifications when ResourceTrackers are
transferred or removed. The MaterializationResponsibility::withResourceKeyDo
method can be used to create associations between the key for a ResourceTracker
and an allocated resource in a thread-safe way.
RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the
ResourceManager API to enable tracking and removal of memory allocated by the
JIT linker.
The new JITDylib::clear method can be used to trigger removal of every
ResourceTracker associated with the JITDylib (note that this will only
remove resources for the JITDylib, it does not run static destructors).
This patch includes unit tests showing basic usage. A follow-up patch will
update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will
use this API to release code associated with anonymous expressions.
This removes all legacy layers, legacy utilities, the old Orc C bindings,
OrcMCJITReplacement, and OrcMCJITReplacement regression tests.
ExecutionEngine and MCJIT are not affected by this change.
Have the ODS TypeDef generator write the getChecked() definition.
Also add to TypeParamCommaFormatter a `JustParams` format and
refactor around that.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D89438
This makes diffing with the manual tables easier. And if we ever
directly use the autogenerated tables instead of the manual tables
we'll need them to be in sorted order for the binary search.
This changes the checking for available locales to use one program that
iterates over argv to test multiple locale names instead of checking each
name with a separate executable.
This massively speeds up running individual tests using an SSH executor
(it can take up to 10 seconds to compile and run a single test in some
emulated environments) in case no locales are installed since then all
fallback names are tested idividually. But even on a native machine
this reduces the libc++ lit startup time by ~1-2 second for me on a machine
that does not have locale data installed.
Reviewed By: #libc, ldionne
Differential Revision: https://reviews.llvm.org/D88884
Some projects (e.g. FreeBSD) align pointers to the right but expect a
space between the '*' and any pointer qualifiers such as const. To handle
these cases this patch adds a new config option SpaceAroundPointerQualifiers
that can be used to configure whether spaces need to be added before/after
pointer qualifiers.
PointerAlignment = Right
SpaceAroundPointerQualifiers = Default/After:
void *const *x = NULL;
SpaceAroundPointerQualifiers = Before/Both
void * const *x = NULL;
PointerAlignment = Left
SpaceAroundPointerQualifiers = Default/Before:
void* const* x = NULL;
SpaceAroundPointerQualifiers = After/Both
void* const * x = NULL;
PointerAlignment = Middle
SpaceAroundPointerQualifiers = Default/Before/After/Both:
void * const * x = NULL;
Reviewed By: MyDeveloperDay
Differential Revision: https://reviews.llvm.org/D88227
On FreeBSD we get the following error when passing zero as the requested
alignment: error: requested alignment is not a power of 2
Reviewed By: #libc, ldionne
Differential Revision: https://reviews.llvm.org/D88820
Implementing the likelihood attributes for the iteration statements adds
a new helper function. This function can't be const qualified since
these non-modifying members aren't const qualified.
The semantics associated with `__vector [un]signed long` are neither
consistently specified nor consistently implemented.
The IBM XL compilers on AIX traditionally treated these as deprecated
aliases for the corresponding `__vector int` type in both 32-bit and
64-bit modes. The newer, Clang-based, IBM XL compilers on AIX make usage
of the previously deprecated types an error. This is also consistent
with IBM XL C/C++ for Linux on Power (on little endian distributions).
In line with the above, this patch upgrades (on AIX) the deprecation of
`__vector long` to become removal.
Reviewed By: ZarkoCA
Differential Revision: https://reviews.llvm.org/D89443
Format specifiers of incorrect length are replaced with format specifier
macros from `<cinttypes>` matching the typedefs used to declare the type
of the value being printed.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D89637
... because using unsigned constants for comparing against signed values
is liable to mutate the signed value via conversion to an unsigned type
due to the usual arithmetic conversions.
There were invalid DIE references which nobody used. If LLDB starts to
report invalid DIE references it would lock up (mutex lock).
These invalid DIE references are there since initial check-in by:
https://reviews.llvm.org/D83302
isNoopIntrinsic returns true for some intrinsics that are modeled in
MemorySSA but do not actually read or write any memory and do not block
DSE. Such intrinsics should not be considered as read-clobbers.
This pattern was repeated a few times, and for some reason always
using insert or try_emplace, even though we know in advance that
we're looking for an existing entry and not trying to create a
new one.
This implements the likelihood attribute for the switch statement. Based on the
discussion in D85091 and D86559 it only handles the attribute when placed on
the case labels or the default labels.
It also marks the likelihood attribute as feature complete. There are more QoI
patches in the pipeline.
Differential Revision: https://reviews.llvm.org/D89210
loadiwkey and aesenc128kl share the same opcode but one is memory
and one is register. But they're behavior is quite different. We
were crashing because one has an output register and one doesn't
and the backend couldn't account for that. But since they aren't
foldable we can just add NotMemoryFoldable so they won't be looked at.
It's not pretty, but probably better than modelling it
as an opaque SCEVUnknown, i guess.
It is relevant e.g. for the loop that was brought up in
https://bugs.llvm.org/show_bug.cgi?id=46786#c26
as an example of what we'd be able to better analyze
once SCEV handles `ptrtoint` (D89456).
But as it is evident, even if we deal with `ptrtoint` there,
we also fail to model such an `ashr`.
Also, modeling of mul-of-exact-shr/div could use improvement.
As per alive2:
https://alive2.llvm.org/ce/z/tnfZKd
```
define i8 @src(i8 %0) {
%2 = ashr exact i8 %0, 4
ret i8 %2
}
declare i8 @llvm.abs(i8, i1)
declare i8 @llvm.smin(i8, i8)
declare i8 @llvm.smax(i8, i8)
define i8 @tgt(i8 %x) {
%abs_x = call i8 @llvm.abs(i8 %x, i1 false)
%div = udiv exact i8 %abs_x, 16
%t0 = call i8 @llvm.smax(i8 %x, i8 -1)
%t1 = call i8 @llvm.smin(i8 %t0, i8 1)
%r = mul nsw i8 %div, %t1
ret i8 %r
}
```
Transformation seems to be correct!