LookupAddress makes no sense for DWARFTypeUnit.
Also make GetNonSkeletonUnit to preserve the called type.
Differential Revision: https://reviews.llvm.org/D89646
This broke Chromium's PGO build, it seems because hot-cold-splitting got turned
on unintentionally. See comment on the code review for repro etc.
> This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
> the splitting pass to be toggled on/off. The current method of passing
> `-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
> correctly (say, with `-O0` or `-Oz`).
>
> To implement the -fsplit-cold-code option, an attribute is applied to
> functions to indicate that they may be considered for splitting. This
> removes some complexity from the old/new PM pipeline builders, and
> behaves as expected when LTO is enabled.
>
> Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
> Differential Revision: https://reviews.llvm.org/D57265
> Reviewed By: Aditya Kumar, Vedant Kumar
> Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
This reverts commit 273c299d5d.
Performs a detailed profiling of clangd lsp server and conveys the
result to the client as a json object. It is of the form:
{
"_self": 0,
"_total": 8,
"child1": {
"_self": 4,
"_total": 4,
}
"child2": {
"_self": 2,
"_total": 4,
"child_deep": {
"_self": 2,
"_total": 2,
}
}
}
Differential Revision: https://reviews.llvm.org/D89277
Add missing ISel patterns related to select_cc DAG nodes.
Add regression test of all combination of possible scalar types.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89672
Add VBRD/VMV vector instructions. In order to do that, also support
VM512 registers and RV instruction format in MC layer. Also add
regression tests for new instructions.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89641
Add LSV/LVS/LVM/SVM vector instructions and regression tests.
Also update AsmParser to support new format of operands.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89499
Support br_cc instruction comparing fp128 values. Add a br_cc.ll
regression test for all kind of br_cc instructions. And, clean
existing branch regression tests, this time. Clean a brcond.ll
regression test for brcond instruction. Remove mixed branch1.ll
regression test.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89627
Add an ISel pattern for fp128 select instruction and optimize generated
code for other types' select. instructions. Add a regression test also.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89509
LLVM dialect has been defining Op arguments by deriving the `Arguments` ODS
class. This has arguably worse readability due to large indentation caused by
multiple derivations, and is inconsistent with other ODS files. Use the `let
arguments` form instead.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D89560
This patch breaks Orc.h up into Orc.h, LLJIT.h and OrcEE.h.
Orc.h contain core Orc utilities.
LLJIT.h contains LLJIT specific types and functions.
OrcEE.h contains types and functions that depend on ExecutionEngine.
The intent is that these headers should match future library divisions: Clients
who only use Orc.h should only need to link againt the Orc core libraries,
clients using LLJIT.h will also need to link against LLVM core, and clients
using OrcEE.h will also have to link against ExecutionEngine.
In addition to breaking up the Orc.h header this patch introduces functions to:
(1) Set the object linking layer creation function on LLJITBuilder.
(2) Create an RTDyldObjectLinkingLayer instance (particularly for use in (1)).
(3) Register JITEventListeners with an RTDyldObjectLinkingLayer.
Together (1), (2) and (3) can be used to force use of RTDyldObjectLinkingLayer
as the underlying JIT linker for LLJIT, rather than the platform default, and
to register event listeners with the RTDyldObjectLinkingLayer.
C API clients can now define a custom definition generator by providing a
callback function (to implement DefinitionGenerator::tryToGenerate) and context
object. All arguments for the DefinitionGenerator::tryToGenerate method have
been given C API counterparts, and the API allows for optionally asynchronous
generation.
Symbol string pool entries are ref counted, but not automatically cleared.
This can cause the size of the pool to grow without bound if it's not
periodically cleared. These functions allow that to be done via the C API.
This patch moves definition generation out from the session lock, instead
running it under a per-dylib generator lock. It also makes the
DefinitionGenerator::tryToGenerate method optionally asynchronous: Generators
are handed an opaque LookupState object which can be captured to stop/restart
the lookup process.
The new scheme provides the following benefits and guarantees:
(1) Queries that do not need to attempt definition generation (because all
requested symbols matched against existing definitions in the JITDylib)
can proceed without being blocked by any running definition generators.
(2) Definition generators can capture the LookupState to continue their work
asynchronously. This allows generators to run for an arbitrary amount of
time without blocking a thread. Definition generators that do not need to
run asynchronously can return without capturing the LookupState to eliminate
unnecessary recursion and improve lookup performance.
(3) Definition generators still do not need to worry about concurrency or
re-entrance: Since they are still run under a (per-dylib) lock, generators
will never be re-entered concurrently, or given overlapping symbol sets to
generate.
Finally, the new system distinguishes between symbols that are candidates for
generation (generation candidates) and symbols that failed to match for a query
(due to symbol visibility). This fixes a bug where an unresolved symbol could
trigger generation of a duplicate definition for an existing hidden symbol.
MaterializationResponsibility, JITDylib, and ExecutionSession collectively
manage the OrcV2 core JIT state. Responsibility for maintaining and
updating this state has previously been spread among these classes, resulting
in implementations that are each non-trivial, but all tightly coupled. This has
in turn made reading the code and reasoning about state update and locking
rules difficult.
The core state model can be simplified by thinking of
MaterializationResponsibility and JITDylib as facets of ExecutionSession. This
commit is the first in a series intended to refactor Core.cpp to reflect this
model. Operations on MaterializationResponsibility and JITDylib will forward to
implementation methods inside ExecutionSession. Raw state will remain with the
original classes, but in most cases will only be modified by the
ExecutionSession.
All existing SCEV cast types operate on integers.
D89456 will add SCEVPtrToIntExpr cast expression type.
I believe this is best for consistency.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D89455
Usage of nested parallel regions were not working correctly and leading
to assertion failures. Fix contains the following changes,
1) Don't set the insertion point in the body callback.
2) Save the continuation IP in a stack and set the branch to
continuationIP at the terminator.
Reviewed By: SouraVX, jdoerfert, ftynse
Differential Revision: https://reviews.llvm.org/D88720
In certain places in llvm/lib/CodeGen we were relying upon the TypeSize
comparison operators when in fact the code was only ever expecting
either scalar values or fixed width vectors. This patch changes a few
functions that were always expecting to work on scalar or fixed width
types:
1. DAGCombiner::mergeTruncStores - deals with scalar integers only.
2. DAGCombiner::ReduceLoadWidth - not valid for vectors.
3. DAGCombiner::createBuildVecShuffle - should only be used for
fixed width vectors.
4. SelectionDAGLegalize::ExpandFCOPYSIGN and
SelectionDAGLegalize::getSignAsIntValue - only work on scalars.
Differential Revision: https://reviews.llvm.org/D88562
This may be fixed in the future, but since redefinition in OrcV2 requires more
manual work on the JIT client's part it was left out of the most recent update
to the tutorials.
In certain places in llvm/lib/CodeGen we were relying upon the TypeSize
comparison operators when in fact the code was only ever expecting
either scalar values or fixed width vectors. I've changed some of these
places to use the equivalent scalar operator.
Differential Revision: https://reviews.llvm.org/D88482
In CodeGenDAGPatterns.cpp we were relying upon TypeSize comparison
operators for ordering types, when we can actually just use the known
minimum size since the scalable property is already being taken into
account. Also, in TypeInfer::EnforceSameSize I fixed some implicit
TypeSize->uint64_t casts by changing the code to test the equality
of TypeSize objects instead.
In other places I have replaced calls to getSizeInBits() with
getFixedSizeInBits() because we are only ever expecting integer values.
Differential Revision: https://reviews.llvm.org/D88947
MSVC doesn't seem to like capturing references to variables in lambdas passed to
the variable's constructor. This should fix the windows bots that have been
unable to build the new ResourceTracker unit test.
In certain places in the code we can never end up in a situation where
we're mixing fixed width and scalable vector types. For example,
we can't have truncations and extends that change the lane count. Also,
in other places such as GenWidenVectorStores and GenWidenVectorLoads we
know from the behaviour of FindMemType that we can never choose a vector
type with a different scalable property.
In various places I have used EVT::bitsXY functions instead of
TypeSize::isKnownXY, where it probably makes sense to keep an assert
that scalable properties match.
Differential Revision: https://reviews.llvm.org/D88654
In many places in the AArch64 backend we are comparing TypeSize objects,
but in fact we are only ever expecting fixed width types. I've changed
all such comparisons to use their integer equivalents by replacing
calls to getSizeInBits() with getFixedSizeInBits(), etc.
Differential Revision: https://reviews.llvm.org/D89116
AllReduceLowering is currently the only GPU rewrite pattern, but more are coming. This is a preparation change.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D89370