Also renamed the fields to follow style guidelines.
Accessors help with readability - weight mutation, in particular,
is easier to follow this way.
Differential Revision: https://reviews.llvm.org/D87725
During register coalescing, we update the live-intervals on-the-fly.
To do that we are in this strange mode where the live-intervals can
be slightly out-of-sync (more precisely they are forward looking)
compared to what the IR actually represents.
This happens because the register coalescer only updates the IR when
it is done with updating the live-intervals and it has to do it this
way because updating the IR on-the-fly would actually clobber some
information on how the live-ranges that are being updated look like.
This is problematic for updates that rely on the IR to accurately
represents the state of the live-ranges. Right now, we have only
one of those: stripValuesNotDefiningMask.
To reconcile this need of out-of-sync IR, this patch introduces a
new argument to LiveInterval::refineSubRanges that allows the code
doing the live range updates to reason about how the code should
look like after the coalescer will have rewritten the registers.
Essentially this captures how a subregister index with be offseted
to match its position in a new register class.
E.g., let say we want to merge:
V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32>
We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32>
overlap, i.e., by choosing a class where we can find "offset + 1 == 3".
Put differently we align V2's sub3 with V1's sub1:
V2: sub0 sub1 sub2 sub3
V1: <offset> sub0 sub1
This offset will look like a composed subregidx in the the class:
V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
=> V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
Now if we didn't rewrite the uses and def of V1, all the checks for V1
need to account for this offset to match what the live intervals intend
to capture.
Prior to this patch, we would fail to recognize the uses and def of V1
and would end up with machine verifier errors: No live segment at def.
This could lead to miscompile as we would drop some live-ranges and
thus, miss some interferences.
For this problem to trigger, we need to reach stripValuesNotDefiningMask
while having a mismatch between the IR and the live-ranges (i.e.,
we have to apply a subreg offset to the IR.)
This requires the following three conditions:
1. An update of overlapping subreg lanes: e.g., dsub0 == <ssub0, ssub1>
2. An update with Tuple registers with a possibility to coalesce the
subreg index: e.g., v1.dsub_1 == v2.dsub_3
3. Subreg liveness enabled.
looking at the IR to decide what is alive and what is not, i.e., calling
stripValuesNotDefiningMask.
coalescer maintains for the live-ranges information.
None of the targets that currently use subreg liveness (i.e., the targets
that fulfill #3, Hexagon, AMDGPU, PowerPC, and SystemZ IIRC) expose #1 and
and #2, so this patch also artificial enables subreg liveness for ARM,
so that a nice test case can be attached.
This testcase is invalid, and caught by the verifier. For the verifier
to catch it, the live interval computation needs to complete. Remove
the assert so the verifier catches this, which is less confusing.
In this testcase there is an undefined use of a subregister, and lanes
which aren't used or defined. An equivalent testcase with the
super-register shrunk to have no untouched lanes already hit this
verifier error.
llvm-svn: 371792
When splitting a subrange we end up with two different subranges covering
two different, non overlapping, lanes.
As part of this splitting the VNIs of the original live-range need
to be dispatched to the subranges according to which lanes they are
actually defining.
Prior to this patch we were assuming that all values were defining
all lanes. This was wrong as demonstrated by llvm.org/PR40835.
Differential Revision: https://reviews.llvm.org/D59731
llvm-svn: 357032
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
Headers/Implementation files should be named after the class they
declare/define.
Also eliminated an `#include "llvm/CodeGen/LiveIntervalAnalysis.h"` in
favor of `class LiveIntarvals;`
llvm-svn: 320546
LLVM Coding Standards:
Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel
case, and start with a lower case letter (e.g. openFile() or isFoo()).
Differential Revision: https://reviews.llvm.org/D40416
llvm-svn: 319168
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
Specifically avoid implicit conversions from/to integral types to
avoid potential errors when changing the underlying type. For example,
a typical initialization of a "full" mask was "LaneMask = ~0u", which
would result in a value of 0x00000000FFFFFFFF if the type was extended
to uint64_t.
Differential Revision: https://reviews.llvm.org/D27454
llvm-svn: 289820
The register allocator can split a live interval of a register into a set
of smaller intervals. After the allocation of registers is complete, the
rewriter will modify the IR to replace virtual registers with the corres-
ponding physical registers. At this stage, if a register corresponding
to a subregister of a virtual register is used, the rewriter will check
if that subregister is undefined, and if so, it will add the <undef> flag
to the machine operand. The function verifying liveness of the subregis-
ter would assume that it is undefined, unless any of the subranges of the
live interval proves otherwise.
The problem is that the live intervals created during splitting do not
have any subranges, even if the original parent interval did. This could
result in the <undef> flag placed on a register that is actually defined.
Differential Revision: http://reviews.llvm.org/D21189
llvm-svn: 279625
Refactor LiveIntervals::renameDisconnectedComponents() to be a pass.
Also change the name to "RenameIndependentSubregs":
- renameDisconnectedComponents() worked on a MachineFunction at a time
so it is a natural candidate for a machine function pass.
- The algorithm is testable with a .mir test now.
- This also fixes a problem where the lazy renaming as part of the
MachineScheduler introduced IMPLICIT_DEF instructions after the number
of a nodes in a region were counted leading to a mismatch.
Differential Revision: http://reviews.llvm.org/D20507
llvm-svn: 271345
We now use LiveRangeCalc::extendToUses() instead of a specially designed
algorithm in constructMainRangeFromSubranges():
- The original motivation for constructMainRangeFromSubranges() were
differences between the main liverange and subranges because of hidden
dead definitions. This case however cannot happen anymore with the
DetectDeadLaneMasks pass in place.
- It simplifies the code.
- This fixes a longstanding bug where we did not properly create new SSA
values on merging control flow (the MachineVerifier missed most of
these cases).
- Move constructMainRangeFromSubranges() to LiveIntervalAnalysis and
LiveRangeCalc to better match the implementation/available helper
functions.
This re-applies r269016. The fixes from r270290 and r270259 should avoid
the machine verifier problems this time.
llvm-svn: 270291
Fix renameDisconnectedComponents() creating vreg uses that can be
reached from function begin withouthaving a definition (or explicit
live-in). Fix this by inserting IMPLICIT_DEF instruction before
control-flow joins as necessary.
Removes an assert from MachineScheduler because we may now get
additional IMPLICIT_DEF when preparing the scheduling policy.
This fixes the underlying problem of http://llvm.org/PR27705
llvm-svn: 270259
We now use LiveRangeCalc::extendToUses() instead of a specially designed
algorithm in constructMainRangeFromSubranges():
- The original motivation for constructMainRangeFromSubranges() were
differences between the main liverange and subranges because of hidden
dead definitions. This case however cannot happen anymore with the
DetectDeadLaneMasks pass in place.
- It simplifies the code.
- This fixes a longstanding bug where we did not properly create new SSA
values on merging control flow (the MachineVerifier missed most of
these cases).
- Move constructMainRangeFromSubranges() to LiveIntervalAnalysis and
LiveRangeCalc to better match the implementation/available helper
functions.
llvm-svn: 269016
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
Take MachineInstr by reference instead of by pointer in SlotIndexes and
the SlotIndex wrappers in LiveIntervals. The MachineInstrs here are
never null, so this cleans up the API a bit. It also incidentally
removes a few implicit conversions from MachineInstrBundleIterator to
MachineInstr* (see PR26753).
At a couple of call sites it was convenient to convert to a range-based
for loop over MachineBasicBlock::instr_begin/instr_end, so I added
MachineBasicBlock::instrs.
llvm-svn: 262115
This renaming is necessary to avoid a subregister aware scheduler
accidentally creating liveness "holes" which are rejected by the
MachineVerifier.
Explanation as found in this patch:
Helper class that can divide MachineOperands of a virtual register into
equivalence classes of connected components.
MachineOperands belong to the same equivalence class when they are part of
the same SubRange segment or adjacent segments (adjacent in control
flow); Different subranges affected by the same MachineOperand belong to
the same equivalence class.
Example:
vreg0:sub0 = ...
vreg0:sub1 = ...
vreg0:sub2 = ...
...
xxx = op vreg0:sub1
vreg0:sub1 = ...
store vreg0:sub0_sub1
The example contains 3 different equivalence classes:
- One for the (dead) vreg0:sub2 definition
- One containing the first vreg0:sub1 definition and its use,
but not the second definition!
- The remaining class contains all other operands involving vreg0.
We provide a utility function here to rename disjunct classes to different
virtual registers.
Differential Revision: http://reviews.llvm.org/D16126
llvm-svn: 258257
This improves ConnectedVNInfoEqClasses::Distribute() to distribute the
segments and value numbers in the subranges instead of conservatively
clearing all subregister info.
No separate test here, just clearing the subrange instead of properly
distributing them would however break my upcoming fix regarding dead super
register definitions.
Differential Revision: http://reviews.llvm.org/D13075
llvm-svn: 248334
Empty subranges are not allowed in a LiveInterval and must be removed
instead: Check this in the verifiers, put a reminder for this in the
comment of the shrinkToUses variant for a single lane and make it
automatic for the shrinkToUses variant for a LiveInterval.
llvm-svn: 242431
If two livesegments from different subranges happened to have the same
definition they could possibly end up as two adjacent segments in the
main liverange with the same value number which is not allowed. Detect
such cases and fix them in the 2nd pass of computeFromMainRange() if
necessary.
No testcase as there is only an out-of-tree target where I can sensibly
come up with one.
llvm-svn: 234382
GCC 4.7's libstdc++ doesn't have std::map::emplace, but it does have
std::unordered_map::emplace, and the use case here doesn't appear to
need ordering. The container has been changed in a separate/precursor
patch, and now this patch should hopefully build cleanly even with
GCC 4.7.
& then I realized the order of the container did matter, so extra
handling of ordering was added in r231189.
Original commit message:
This makes LiveRange non-copyable, and LiveInterval is already
non-movable (due to the explicit dtor), so now it's non-copyable and
non-movable.
Fix the one case where we were relying on the (deprecated in C++11)
implicit copy ctor of LiveInterval (which happened to work because the
ctor created an object with a null segmentSet, so double-deleting the
null pointer was fine).
llvm-svn: 231192
Apparently something does care about ordering of LiveIntervals... so
revert all that stuff (r231175, r231176, r231177) & take some time to
re-evaluate.
llvm-svn: 231184
GCC 4.7's libstdc++ doesn't have std::map::emplace, but it does have
std::unordered_map::emplace, and the use case here doesn't appear to
need ordering. The container has been changed in a separate/precursor
patch, and now this patch should hopefully build cleanly even with
GCC 4.7.
Original commit message:
This makes LiveRange non-copyable, and LiveInterval is already
non-movable (due to the explicit dtor), so now it's non-copyable and
non-movable.
Fix the one case where we were relying on the (deprecated in C++11)
implicit copy ctor of LiveInterval (which happened to work because the
ctor created an object with a null segmentSet, so double-deleting the
null pointer was fine).
llvm-svn: 231176