When a macro instantiation occurs, reserve a SLocEntry chunk with length the
full length of the macro definition source. Set the spelling location of this chunk
to point to the start of the macro definition and any tokens that are lexed directly
from the macro definition will get a location from this chunk with the appropriate offset.
For any tokens that come from argument expansion, '##' paste operator, etc. have their
instantiation location point at the appropriate place in the instantiated macro definition
(the argument identifier and the '##' token respectively).
This improves macro instantiation diagnostics:
Before:
t.c:5:9: error: invalid operands to binary expression ('struct S' and 'int')
int y = M(/);
^~~~
t.c:5:11: note: instantiated from:
int y = M(/);
^
After:
t.c:5:9: error: invalid operands to binary expression ('struct S' and 'int')
int y = M(/);
^~~~
t.c:3:20: note: instantiated from:
\#define M(op) (foo op 3);
~~~ ^ ~
t.c:5:11: note: instantiated from:
int y = M(/);
^
The memory savings for a candidate boost library that abuses the preprocessor are:
- 32% less SLocEntries (37M -> 25M)
- 30% reduction in PCH file size (900M -> 635M)
- 50% reduction in memory usage for the SLocEntry table (1.6G -> 800M)
llvm-svn: 134587
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
PCH. This works now, except for limitations not being able to do things
with identifiers. The basic example in the testcase works though.
llvm-svn: 68832
improvement, source locations read from the PCH file will properly
resolve to the source files that were used to build the PCH file
itself.
Once we have the preprocessor state stored in the PCH file, source
locations that refer to macro instantiations that occur in the PCH
file should have the appropriate instantiation information.
llvm-svn: 68758
de-serialization of abstract syntax trees.
PCH support serializes the contents of the abstract syntax tree (AST)
to a bitstream. When the PCH file is read, declarations are serialized
as-needed. For example, a declaration of a variable "x" will be
deserialized only when its VarDecl can be found by a client, e.g.,
based on name lookup for "x" or traversing the entire contents of the
owner of "x".
This commit provides the framework for serialization and (lazy)
deserialization, along with support for variable and typedef
declarations (along with several kinds of types). More
declarations/types, along with important auxiliary structures (source
manager, preprocessor, etc.), will follow.
llvm-svn: 68732