This is a follow-up to r291037+r291258, which used null debug locations
to prevent jumpy line tables.
Using line 0 locations achieves the same effect, but works better for
crash attribution because it preserves the right inline scope.
Differential Revision: https://reviews.llvm.org/D60913
llvm-svn: 358791
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Partial Redundancy Elimination of GEPs prevents CodeGenPrepare from
sinking the addressing mode computation of memory instructions back
to its uses. The problem comes from the insertion of PHIs, which
confuse CGP and make it bail.
I've autogenerated the check lines of an existing test and added a
store instruction to demonstrate the motivation behind this change.
The store is now using the gep instead of a phi.
Differential Revision: https://reviews.llvm.org/D55009
llvm-svn: 348496
This is being done in order to make GVN able to better optimize certain inputs.
MemDep doesn't use PhiValues directly, but does need to notifiy it when things
get invalidated.
Differential Revision: https://reviews.llvm.org/D48489
llvm-svn: 338384
In ConstructSSAForLoadSet if an available value is actually the load that we're
doing SSA construction to eliminate, then we can omit it as SSAUpdate will add
in the value for the phi that will be replacing it anyway. This can result in
simpler IR which can allow further optimisation.
Differential Revision: https://reviews.llvm.org/D44160
llvm-svn: 337686
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
Before this patch, debugify would insert debug value intrinsics before the
terminating instruction in a block. This had the advantage of being simple,
but was a bit too simple/unrealistic.
This patch teaches debugify to insert debug values immediately after their
operand defs. This enables better testing of the compiler.
For example, with this patch, `opt -debugify-each` is able to identify a
vectorizer DI-invariance bug fixed in llvm.org/PR32761. In this bug, the
vectorizer produced different output with/without debug info present.
Reverting Davide's bugfix locally, I see:
$ ~/scripts/opt-check-dbg-invar.sh ./bin/opt \
.../SLPVectorizer/AArch64/spillcost-di.ll -slp-vectorizer
Comparing: -slp-vectorizer .../SLPVectorizer/AArch64/spillcost-di.ll
Baseline: /var/folders/j8/t4w0bp8j6x1g6fpghkcb4sjm0000gp/T/tmp.iYYeL1kf
With DI : /var/folders/j8/t4w0bp8j6x1g6fpghkcb4sjm0000gp/T/tmp.sQtQSeet
9,11c9,11
< %5 = getelementptr inbounds %0, %0* %2, i64 %0, i32 1
< %6 = bitcast i64* %4 to <2 x i64>*
< %7 = load <2 x i64>, <2 x i64>* %6, align 8, !tbaa !0
---
> %5 = load i64, i64* %4, align 8, !tbaa !0
> %6 = getelementptr inbounds %0, %0* %2, i64 %0, i32 1
> %7 = load i64, i64* %6, align 8, !tbaa !5
12a13
> store i64 %5, i64* %8, align 8, !tbaa !0
14,15c15
< %10 = bitcast i64* %8 to <2 x i64>*
< store <2 x i64> %7, <2 x i64>* %10, align 8, !tbaa !0
---
> store i64 %7, i64* %9, align 8, !tbaa !5
:: Found a test case ^
Running this over the *.ll files in tree, I found four additional examples
which compile differently with/without DI present. I plan on filing bugs for
these.
llvm-svn: 334118
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
In r325063, we salvaged debug values from dying instructions in
GVN::processBlock() and GVN::performScalarPRE().
The change in performScalarPRE(), while correct, is unhelpful. It
introduced a call to salvageDebugInfo() which was immediately followed
by a RAUW, meaning it prevented the RAUW from efficiently updating
dbg.value intrinsics. This commit reverts the mistake and tightens up
the affected test case.
llvm-svn: 325308
This preserves an additional 581 unique source variables in a stage2
build of clang (according to `llvm-dwarfdump --statistics`). It
increases the size of the .debug_loc section by 0.1% (or 87139 bytes).
Differential Revision: https://reviews.llvm.org/D43255
llvm-svn: 325063
These were inspired by a very old review I'm about to abandon (https://reviews.llvm.org/D7061). Several of the test cases from that worked without modification and expanding test coverage of such cases is always worthwhile.
llvm-svn: 321764
This is to address a problem similar to those in D37460 for Scalar PRE. We should not
PRE across an instruction that may not pass execution to its successor unless it is safe
to speculatively execute it.
Differential Revision: https://reviews.llvm.org/D38619
llvm-svn: 319147
We must patch all existing incoming values of Phi node,
otherwise it is possible that we can see poison
where program does not expect to see it.
This is the similar what GVN does.
The added test test/Transforms/GVN/PRE/pre-jt-add.ll shows an
example of wrong optimization done by jump threading due to
GVN PRE did not patch existing incoming value.
Reviewers: mkazantsev, wmi, dberlin, davide
Reviewed By: dberlin
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D39637
llvm-svn: 317768
This patch fixes the miscompile that happens when PRE hoists loads across guards and
other instructions that don't always pass control flow to their successors. PRE is now prohibited
to hoist across such instructions because there is no guarantee that the load standing after such
instruction is still valid before such instruction. For example, a load from under a guard may be
invalid before the guard in the following case:
int array[LEN];
...
guard(0 <= index && index < LEN);
use(array[index]);
Differential Revision: https://reviews.llvm.org/D37460
llvm-svn: 316975
This patch reverts rL315440 because of the bug described at
https://bugs.llvm.org/show_bug.cgi?id=34937
The fix for the bug is on review as D38944, but not yet ready. Given this is a regression reverting until a fix is ready is called for.
Max would have done the revert himself, but is having trouble doing a build of fresh LLVM for some reason. I did the build and test to ensure the revert worked as expected on his behalf.
llvm-svn: 315974
This patch fixes the miscompile that happens when PRE hoists loads across guards and
other instructions that don't always pass control flow to their successors. PRE is now prohibited
to hoist across such instructions because there is no guarantee that the load standing after such
instruction is still valid before such instruction. For example, a load from under a guard may be
invalid before the guard in the following case:
int array[LEN];
...
guard(0 <= index && index < LEN);
use(array[index]);
Differential Revision: https://reviews.llvm.org/D37460
llvm-svn: 315440
When a new phi is generated for scalarpre of an expression, the phiTranslate cache
will become stale: Before PRE, the candidate expression must not be available in a
predecessor block, and phitranslate will cache the information. After PRE, the
expression will become available in all predecessor blocks, so the related entries
in phiTranslate cache becomes stale. The patch will simply remove the stale entries
so phiTranslate can be recomputed next time.
The stale entries in phitranslate cache will not affect correctness but will cause
missing PRE opportunity for later instructions.
Differential Revision: https://reviews.llvm.org/D36124
llvm-svn: 310421
Recommit after workaround the bug PR31652.
Three bugs fixed in previous recommits: The first one is to use CurrentBlock
instead of PREInstr's Parent as param of performScalarPREInsertion because
the Parent of a clone instruction may be uninitialized. The second one is stop
PRE when CurrentBlock to its predecessor is a backedge and an operand of CurInst
is defined inside of CurrentBlock. The same value defined inside of loop in last
iteration can not be regarded as available. The third one is an out-of-bound
array access in a flipped if guard.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
Differential Revision: https://reviews.llvm.org/D32252
llvm-svn: 309397
Summary: Currently, when GVN creates a load and when InstCombine creates a new store for unreachable Load, the DebugLoc info gets lost.
Reviewers: dberlin, davide, aprantl
Reviewed By: aprantl
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D34639
llvm-svn: 308404
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
This reverts commit r306313. This breaks selfhost at -O3 and PR33652.
Let me know if you need additional information on reproducing the issue.
llvm-svn: 307021
The recommit fixes three bugs: The first one is to use CurrentBlock instead of
PREInstr's Parent as param of performScalarPREInsertion because the Parent
of a clone instruction may be uninitialized. The second one is stop PRE when
CurrentBlock to its predecessor is a backedge and an operand of CurInst is
defined inside of CurrentBlock. The same value defined inside of loop in last
iteration can not be regarded as available. The third one is an out-of-bound
array access in a flipped if guard.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
llvm-svn: 306313
The recommit fixes two bugs: The first one is to use CurrentBlock instead of
PREInstr's Parent as param of performScalarPREInsertion because the Parent
of a clone instruction may be uninitialized. The second one is stop PRE when
CurrentBlock to its predecessor is a backedge and an operand of CurInst is
defined inside of CurrentBlock. The same value defined inside of loop in last
iteration can not be regarded as available.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
Differential Revision: https://reviews.llvm.org/D32252
llvm-svn: 305578
The recommit is to fix a bug about ExtractValue and InsertValue ops. For those
ops, some varargs inside GVN::Expression are not value numbers but raw index
numbers. It is wrong to do phi-translate for raw index numbers, and the fix is
to stop doing that.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
Differential Revision: https://reviews.llvm.org/D32252
llvm-svn: 304050
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
Differential Revision: https://reviews.llvm.org/D32252
llvm-svn: 303923
Summary:
This fixes the immediate crash caused by introducing an incorrect inttoptr
before attempting the conversion. There may still be a legality
check missing somewhere earlier for non-integral pointers, but this change
seems necessary in any case.
Reviewers: sanjoy, dberlin
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32623
llvm-svn: 302587
Transforms/IndVarSimplify/2011-10-27-lftrnull will fail if this regresses.
Transforms/GVN/PRE/2011-06-01-NonLocalMemdepMiscompile.ll has been changed to still test what it was
trying to test.
llvm-svn: 302446
performing partial redundancy elimination (PRE). Not doing so can cause jumpy line
tables and confusing (though correct) source attributions.
Differential Revision: https://reviews.llvm.org/D27857
llvm-svn: 291037
Summary:
This change adds some verification in the IR verifier around struct path
TBAA metadata.
Other than some basic sanity checks (e.g. we get constant integers where
we expect constant integers), this checks:
- That by the time an struct access tuple `(base-type, offset)` is
"reduced" to a scalar base type, the offset is `0`. For instance, in
C++ you can't start from, say `("struct-a", 16)`, and end up with
`("int", 4)` -- by the time the base type is `"int"`, the offset
better be zero. In particular, a variant of this invariant is needed
for `llvm::getMostGenericTBAA` to be correct.
- That there are no cycles in a struct path.
- That struct type nodes have their offsets listed in an ascending
order.
- That when generating the struct access path, you eventually reach the
access type listed in the tbaa tag node.
Reviewers: dexonsmith, chandlerc, reames, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26438
llvm-svn: 289402
There's no agreement about this patch. I personally find the
PRE machinery of the current GVN hard enough to reason about
that I'm not sure I'll try to land this again, instead of working
on the rewrite).
llvm-svn: 284796
In theory this could be generalized to move anything where
we prove the operands are available, but that would require
rewriting PRE. As NewGVN will hopefully come soon, and we're
trying to rewrite PRE in terms of NewGVN+MemorySSA, it's probably
not worth spending too much time on it. Fix provided by
Daniel Berlin!
llvm-svn: 284311
Pointers in different addrspaces can have different sizes, so it's not valid to look through addrspace cast calculating base and offset for a value.
This is similar to D13008.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D24729
llvm-svn: 282612