The patch removes redundant kmov instructions (not all, we still have a lot of work here) and redundant "and" instructions after "setcc".
I use "AssertZero" marker between X86ISD::SETCC node and "truncate" to eliminate extra "and $1" instruction.
I also changed zext, aext and trunc patterns in the .td file. It allows to remove extra "kmov" instruictions.
This patch fixes https://llvm.org/bugs/show_bug.cgi?id=28173.
Fast ISEL mode is not supported correctly for AVX-512. ICMP/FCMP scalar instruction should return result in k-reg. It will be fixed in one of the next patches. I redirected handling of "cmp" to the DAG builder mode. (The code looks worse in one specific test case, but without this fix the new patch fails).
Differential revision: http://reviews.llvm.org/D21956
llvm-svn: 274613
We can now handle concatenation of each source multiple times. The previous code just checked for each source to appear once in either order.
This also now handles an entire source vector sized piece having undef indices correctly. We now concat with UNDEF instead of using one of the sources. This is responsible for the test case change.
llvm-svn: 274483
After the block placement, if a block ends with a conditional branch, but the
next block is not its successor. The conditional branch should be changed to
unconditional branch. This patch fixes PR28307, PR28297, PR28402.
Differential Revision: http://reviews.llvm.org/D21811
llvm-svn: 274470
This patch adds support for including the avx512 mask register information in the mask/maskz versions of shuffle instruction comments.
This initial version just adds support for MOVDDUP/MOVSHDUP/MOVSLDUP to reduce the mass of test regenerations, other shuffle instructions can be added in due course.
Differential Revision: http://reviews.llvm.org/D21953
llvm-svn: 274459
Its not worth trying to write out tests for all the avx512f builtins yet, just adding tests for lowering of generic IR as we transition to it (shuffles mainly right now).
llvm-svn: 274434
Summary: original test may have different bahavior on different bot, specifically it broke llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21931
llvm-svn: 274368
Summary: The code generation should be independent of the debug info.
Reviewers: zansari, davidxl, mkuper, majnemer
Subscribers: majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D21911
llvm-svn: 274357
When lowering two blended PACKUS, we used to disregard the types
of the PACKUS inputs, indiscriminately generating a v16i8 PACKUS.
This leads to non-selectable things like:
(v16i8 (PACKUS (v4i32 v0), (v4i32 v1)))
Instead, check that the PACKUSes have the same type, and use that
as the final result type.
llvm-svn: 274138
Summary: LLVM assumes that large clearance will hide the partial register spill penalty. But in our experiment, 16 clearance is too small. As the inserted XOR is normally fairly cheap, we should have a higher clearance threshold to aggressively insert XORs that is necessary to break partial register dependency.
Reviewers: wmi, davidxl, stoklund, zansari, myatsina, RKSimon, DavidKreitzer, mkuper, joerg, spatel
Subscribers: davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21560
llvm-svn: 274068
This is a resubmittion of 263158 change after fixing the existing problem with intrinsics mangling (see LTO and intrinsics mangling llvm-dev thread for details).
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 274043
The original implementation attempted to zero registers using
XOR %foo, %foo. This is problematic because it constitutes a
read-modify-write of a register which might not be defined.
Instead, use MOV32r0 to avoid these problems; expandPostRAPseudo does
the right thing here.
llvm-svn: 274024
AVX1 can only broadcast vectors as floats/doubles, so for 256-bit vectors we insert bitcasts if we are shuffling v8i32/v4i64 types. Unfortunately the presence of these bitcasts prevents the current broadcast lowering code from peeking through cases where we have concatenated / extracted vectors to create the 256-bit vectors.
This patch allows us to peek through bitcasts as long as the number of elements doesn't change (i.e. element bitwidth is the same) so the broadcast index is not affected.
Note this bitcast peek is different from the stage later on which doesn't care about the type and is just trying to find a load node.
As we're being more aggressive with bitcasts, we also need to ensure that the broadcast type is correctly bitcasted
Differential Revision: http://reviews.llvm.org/D21660
llvm-svn: 274013
This patch allows target shuffles to be combined to single input immediate permute instructions - (V)PSHUFD/VPERMILPD/VPERMILPS - allowing more general pattern matching than what we current do and improves the likelihood of memory folding compared to existing patterns which tend to reuse the input in multiple arguments.
Further permute instructions (V)PSHUFLW/(V)PSHUFHW/(V)PERMQ/(V)PERMPD may be added in the future but its proven tricky to create tests cases for them so far. (V)PSHUFLW/(V)PSHUFHW is already handled quite well in combineTargetShuffle so it may be that removing some of that code may allow us to perform more of the combining in one place without duplication.
Differential Revision: http://reviews.llvm.org/D21148
llvm-svn: 273999
This is a resubmittion of 263158 change after fixing the existing problem with intrinsics mangling (see LTO and intrinsics mangling llvm-dev thread for details).
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 273892
AVX1 can only broadcast vectors as floats/doubles, so for 256-bit vectors we insert bitcasts if we are shuffling v8i32/v4i64 types. Unfortunately the presence of these bitcasts prevents the current broadcast lowering code from peeking through cases where we have concatenated / extracted vectors to create the 256-bit vectors.
This patch allows us to peek through bitcasts as long as the number of elements doesn't change (i.e. element bitwidth is the same) so the broadcast index is not affected.
Note this bitcast peek is different from the stage later on which doesn't care about the type and is just trying to find a load node.
Differential Revision: http://reviews.llvm.org/D21660
llvm-svn: 273848
Tail merge was making the assumption that a layout successor or
predecessor was always a cfg successor/predecessor. Remove that
assumption. Changes to tests are necessary because the errant cfg edges
were preventing optimizations.
llvm-svn: 273700
Memory references were not being propagated for this folded load. This
prevented optimizations like LICM from hoisting the load.
Added test to verify that this allows LICM to proceed.
llvm-svn: 273617
When considering whether to split an instruction with a memory operand
into an explicit load and a register-based instruction, we currently
check that the resulting instruction has exactly 1 def. This prevents 2
important LICM optimizations: compares with memory operands, and double
indirect calls. All the tests and the test-suite pass without the check.
My guess as to original intent is to limit the additional register pressure
created by the new instruction, but given that we only split out a single
register, it is already limited.
The licm-dominance test now checks actual memory loads for hoisting instead of
undef, and it tests compares.
hoist-invariant-load.ll now checks for 2 hoists, the intended hoist, and a bonus
from calling a got-relative function in a loop.
llvm-svn: 273616
X86FrameLowering::adjustForHiPEPrologue() contains a hard-coded offset
into an Erlang Runtime System-internal data structure (the PCB). As the
layout of this data structure is prone to change, this poses problems
for maintaining compatibility.
To address this problem, the compiler can produce this information as
module-level named metadata. For example (where P_NSP_LIMIT is the
offending offset):
!hipe.literals = !{ !2, !3, !4 }
!2 = !{ !"P_NSP_LIMIT", i32 152 }
!3 = !{ !"X86_LEAF_WORDS", i32 24 }
!4 = !{ !"AMD64_LEAF_WORDS", i32 24 }
Patch by Magnus Lang
Differential Revision: http://reviews.llvm.org/D20363
llvm-svn: 273593
When trying to convert a loading instruction into a FAULTING_LOAD, we
sometimes face code like this:
if %R10 is not null:
%R9<def> = MOV32ri Immediate
%R9<def, tied> = AND32rm %R9, 0x20(%R10)
else:
goto TRAP
In these cases we would like to use the AND32rm instruction as the
faulting operation by hoisting the "depedency" def-ing %R9 also above
the control flow, transforming the program into:
%R9<def> = MOV32ri Immediate
%R9<def, tied> = FAULTING_LOAD_OP(AND32rm %R9, 0x20(%R10), FailPath: TRAP)
This change teaches ImplicitNullChecks to do the above, when safe.
llvm-svn: 273501
We no longer have corresponding code in autoupgrade and the vast majority of the tests were fixed long time ago. Fix the remaining few. One of the verifier test cases is marked as XFAIL because it was passing only because the signature was incorrect.
llvm-svn: 273428
Summary:
Fix the computation of the offsets present in the scopetable when using the
SEH (__except_handler4).
This patch added an intrinsic to track the position of the allocation on the
stack of the EHGuard. This position is needed when producing the ScopeTable.
```
struct _EH4_SCOPETABLE {
DWORD GSCookieOffset;
DWORD GSCookieXOROffset;
DWORD EHCookieOffset;
DWORD EHCookieXOROffset;
_EH4_SCOPETABLE_RECORD ScopeRecord[1];
};
struct _EH4_SCOPETABLE_RECORD {
DWORD EnclosingLevel;
long (*FilterFunc)();
union {
void (*HandlerAddress)();
void (*FinallyFunc)();
};
};
```
The code to generate the EHCookie is added in `X86WinEHState.cpp`.
Which is adding these instructions when using SEH4.
```
Lfunc_begin0:
# BB#0: # %entry
pushl %ebp
movl %esp, %ebp
pushl %ebx
pushl %edi
pushl %esi
subl $28, %esp
movl %ebp, %eax <<-- Loading FramePtr
movl %esp, -36(%ebp)
movl $-2, -16(%ebp)
movl $L__ehtable$use_except_handler4_ssp, %ecx
xorl ___security_cookie, %ecx
movl %ecx, -20(%ebp)
xorl ___security_cookie, %eax <<-- XOR FramePtr and Cookie
movl %eax, -40(%ebp) <<-- Storing EHGuard
leal -28(%ebp), %eax
movl $__except_handler4, -24(%ebp)
movl %fs:0, %ecx
movl %ecx, -28(%ebp)
movl %eax, %fs:0
movl $0, -16(%ebp)
calll _may_throw_or_crash
LBB1_1: # %cont
movl -28(%ebp), %eax
movl %eax, %fs:0
addl $28, %esp
popl %esi
popl %edi
popl %ebx
popl %ebp
retl
```
And the corresponding offset is computed:
```
Luse_except_handler4_ssp$parent_frame_offset = -36
.p2align 2
L__ehtable$use_except_handler4_ssp:
.long -2 # GSCookieOffset
.long 0 # GSCookieXOROffset
.long -40 # EHCookieOffset <<----
.long 0 # EHCookieXOROffset
.long -2 # ToState
.long _catchall_filt # FilterFunction
.long LBB1_2 # ExceptionHandler
```
Clang is not yet producing function using SEH4, but it's a work in progress.
This patch is a step toward having a valid implementation of SEH4.
Unfortunately, it is not yet fully working. The EH registration block is not
allocated at the right offset on the stack.
Reviewers: rnk, majnemer
Subscribers: llvm-commits, chrisha
Differential Revision: http://reviews.llvm.org/D21231
llvm-svn: 273281
Summary:
canCombineSinCosLibcall() would previously combine sin+cos into sincos for
GNUX32/GNUEABI/GNUEABIHF regardless of whether UnsafeFPMath were set or not.
However, GNU would only combine them for UnsafeFPMath because sincos does not
set errno like sin and cos do. It seems likely that this is an oversight.
Reviewers: t.p.northover
Subscribers: t.p.northover, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D21431
llvm-svn: 273259
This reverts commit r273019.
From email I sent to list:
> I don't think this makes sense. Either the linker you're using supports
> this feature, or it doesn't. Having it enabled for llc if your linker
> doesn't support it is not fun.
>
> Further note that this also affects basically all other code using llvm
> libraries -- other than Clang, which explicitly sets it back to false by
> default, unless you set the ENABLE_X86_RELAX_RELOCATIONS cmake flag to
> true.
>
> If you want to enable the relax mode across all llvm tools in some
> circumstances, I think it should be via moving the cmake flag from clang
> down into llvm.
>
> I'm going to revert this commit, since I both think it intrinsically
> doesn't make sense to do this, and because it's breaking some of our
> tools.
llvm-svn: 273245
Fix for PR27726 - sitofp i64 to fp128 was loading the merged load i64 to a x87 register preventing legalization for conversion to fp128.
Added 32-bit tests for fp128 cast/conversions.
llvm-svn: 273210
We currently only allow exact matches of shuffle mask patterns during target shuffle combining.
This patch relaxes this to permit SM_SentinelUndef in the combined shuffle to always be accepted as well as allowing exact matching of the SM_SentinelZero value.
I've adjusted some tests that were requiring exact shuffle masks to now include undef values.
Differential Revision: http://reviews.llvm.org/D21495
llvm-svn: 273119
When calculating a square root using Newton-Raphson with two constants,
a naive implementation is to use five multiplications (four muls to calculate
reciprocal square root and another one to calculate the square root itself).
However, after some reassociation and CSE the same result can be obtained
with only four multiplications. Unfortunately, there's no reliable way to do
such a reassociation in the back-end. So, the patch modifies NR code itself
so that it directly builds optimal code for SQRT and doesn't rely on any
further reassociation.
Patch by Nikolai Bozhenov!
Differential Revision: http://reviews.llvm.org/D21127
llvm-svn: 272920
This allows us to emit native IR in Clang (next commit).
Also, update the intrinsic tests to show that codegen already knows how to handle
the IR that Clang will soon produce.
llvm-svn: 272806
Summary:
... when the offset is not statically known.
Prioritize addresses relative to the stack pointer in the stackmap, but
fallback gracefully to other modes of addressing if the offset to the
stack pointer is not a known constant.
Patch by Oscar Blumberg!
Reviewers: sanjoy
Subscribers: llvm-commits, majnemer, rnk, sanjoy, thanm
Differential Revision: http://reviews.llvm.org/D21259
llvm-svn: 272756
Nearly all the changes to this pass have been done while maintaining and
updating other parts of LLVM. LLVM has had another pass, SROA, which
has superseded ScalarReplAggregates for quite some time.
Differential Revision: http://reviews.llvm.org/D21316
llvm-svn: 272737
Summary: With runtime profile, we have more confidence in branch probability, thus during basic block layout, we set a lower hot prob threshold so that blocks can be layouted optimally.
Reviewers: djasper, davidxl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20991
llvm-svn: 272729
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
For <N x i32> type mul, pmuludq will be used for targets without SSE41, which
often introduces many extra pack and unpack instructions in vectorized loop
body because pmuludq generates <N/2 x i64> type value. However when the operands
of <N x i32> mul are extended from smaller size values like i8 and i16, the type
of mul may be shrunk to use pmullw + pmulhw/pmulhuw instead of pmuludq, which
generates better code. For targets with SSE41, pmulld is supported so no
shrinking is needed.
Differential Revision: http://reviews.llvm.org/D20931
llvm-svn: 272694
Change EmitGlobalVariable to check final assembler section is in BSS
before using .lcomm/.comm directive. This prevents globals from being
put into .bss erroneously when -data-sections is used.
This fixes PR26570.
Reviewers: echristo, rafael
Subscribers: llvm-commits, mehdi_amini
Differential Revision: http://reviews.llvm.org/D21146
llvm-svn: 272674
Summary:
AAResults::callCapturesBefore would previously ignore operand
bundles. It was possible for a later instruction to miss its memory
dependency on a call site that would only access the pointer through a
bundle.
Patch by Oscar Blumberg!
Reviewers: sanjoy
Differential Revision: http://reviews.llvm.org/D21286
llvm-svn: 272580
This patch is intended to solve:
https://llvm.org/bugs/show_bug.cgi?id=28044
By changing the definition of X86ISD::CMPP to use float types, we allow it to be created
and pass legalization for an SSE1-only target where v4i32 is not legal.
The motivational trail for this change includes:
https://llvm.org/bugs/show_bug.cgi?id=28001
and eventually makes this trigger:
http://reviews.llvm.org/D21190
Ie, after this step, we should be free to have Clang generate FP compare IR instead of x86
intrinsics for SSE C packed compare intrinsics. (We can auto-upgrade and remove the LLVM
sse.cmp intrinsics as a follow-up step.) Once we're generating vector IR instead of x86
intrinsics, a big pile of generic optimizations can trigger.
Differential Revision: http://reviews.llvm.org/D21235
llvm-svn: 272511
The script now replace '.LCPI888_8' style asm symbols with the {{\.LCPI.*}} re pattern - this helps stop hardcoded symbols in 32-bit x86 tests changing with every edit of the file
Refreshed some tests to demonstrate the new check
llvm-svn: 272488
PSHUFB can speed up BITREVERSE of byte vectors by performing LUT on the low/high nibbles separately and ORing the results. Wider integer vector types are already BSWAP'd beforehand so also make use of this approach.
llvm-svn: 272477
Add an option to enable the analysis of MachineFunction register
usage to extract the list of clobbered registers.
When enabled, the CodeGen order is changed to be bottom up on the Call
Graph.
The analysis is split in two parts, RegUsageInfoCollector is the
MachineFunction Pass that runs post-RA and collect the list of
clobbered registers to produce a register mask.
An immutable pass, RegisterUsageInfo, stores the RegMask produced by
RegUsageInfoCollector, and keep them available. A future tranformation
pass will use this information to update every call-sites after
instruction selection.
Patch by Vivek Pandya <vivekvpandya@gmail.com>
Differential Revision: http://reviews.llvm.org/D20769
llvm-svn: 272403
Somehow, the codegen logic for these sequences has gone completely untested
until now (note the 2 compare instructions generated per test).
There's also an *Intel* AVX optimization opportunity exposed in these cases
and the existing tests. Intel's (but not AMD's) AVX spec shows that extra FP
predicates were added, so a single comparison should always be sufficient,
and operand commutation should never be necessary.
llvm-svn: 272397
Memory operand is new for AVX512 (SSE/AVX2 didn't support it).
Also dropped the 'mask' from the tests (VPSLLDQ/VPSRLDQ don't support masked operations).
Regenerated VPALIGNR test now that the shuffle comments work
llvm-svn: 272383
The test case is not great espicially because it is still cumbersome to
run the regalloc pass with run-pass. (We miss a bunch of initiliazier to
be properly implemented.)
Related to llvm.org/PR27983
llvm-svn: 272360
512-bit VPSLLDQ/VPSRLDQ can only be used for avx512bw targets so lowerVectorShuffleAsShift had to be adjusted to include the subtarget
llvm-svn: 272300
Summary:
Consider the following diamond CFG:
A
/ \
B C
\/
D
Suppose A->B and A->C have probabilities 81% and 19%. In block-placement, A->B is called a hot edge and the final placement should be ABDC. However, the current implementation outputs ABCD. This is because when choosing the next block of B, it checks if Freq(C->D) > Freq(B->D) * 20%, which is true (if Freq(A) = 100, then Freq(B->D) = 81, Freq(C->D) = 19, and 19 > 81*20%=16.2). Actually, we should use 25% instead of 20% as the probability here, so that we have 19 < 81*25%=20.25, and the desired ABDC layout will be generated.
Reviewers: djasper, davidxl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20989
llvm-svn: 272203
Summary:
This patch is adding support for the MSVC buffer security check implementation
The buffer security check is turned on with the '/GS' compiler switch.
* https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
* To be added to clang here: http://reviews.llvm.org/D20347
Some overview of buffer security check feature and implementation:
* https://msdn.microsoft.com/en-us/library/aa290051(VS.71).aspx
* http://www.ksyash.com/2011/01/buffer-overflow-protection-3/
* http://blog.osom.info/2012/02/understanding-vs-c-compilers-buffer.html
For the following example:
```
int example(int offset, int index) {
char buffer[10];
memset(buffer, 0xCC, index);
return buffer[index];
}
```
The MSVC compiler is adding these instructions to perform stack integrity check:
```
push ebp
mov ebp,esp
sub esp,50h
[1] mov eax,dword ptr [__security_cookie (01068024h)]
[2] xor eax,ebp
[3] mov dword ptr [ebp-4],eax
push ebx
push esi
push edi
mov eax,dword ptr [index]
push eax
push 0CCh
lea ecx,[buffer]
push ecx
call _memset (010610B9h)
add esp,0Ch
mov eax,dword ptr [index]
movsx eax,byte ptr buffer[eax]
pop edi
pop esi
pop ebx
[4] mov ecx,dword ptr [ebp-4]
[5] xor ecx,ebp
[6] call @__security_check_cookie@4 (01061276h)
mov esp,ebp
pop ebp
ret
```
The instrumentation above is:
* [1] is loading the global security canary,
* [3] is storing the local computed ([2]) canary to the guard slot,
* [4] is loading the guard slot and ([5]) re-compute the global canary,
* [6] is validating the resulting canary with the '__security_check_cookie' and performs error handling.
Overview of the current stack-protection implementation:
* lib/CodeGen/StackProtector.cpp
* There is a default stack-protection implementation applied on intermediate representation.
* The target can overload 'getIRStackGuard' method if it has a standard location for the stack protector cookie.
* An intrinsic 'Intrinsic::stackprotector' is added to the prologue. It will be expanded by the instruction selection pass (DAG or Fast).
* Basic Blocks are added to every instrumented function to receive the code for handling stack guard validation and errors handling.
* Guard manipulation and comparison are added directly to the intermediate representation.
* lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
* lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
* There is an implementation that adds instrumentation during instruction selection (for better handling of sibbling calls).
* see long comment above 'class StackProtectorDescriptor' declaration.
* The target needs to override 'getSDagStackGuard' to activate SDAG stack protection generation. (note: getIRStackGuard MUST be nullptr).
* 'getSDagStackGuard' returns the appropriate stack guard (security cookie)
* The code is generated by 'SelectionDAGBuilder.cpp' and 'SelectionDAGISel.cpp'.
* include/llvm/Target/TargetLowering.h
* Contains function to retrieve the default Guard 'Value'; should be overriden by each target to select which implementation is used and provide Guard 'Value'.
* lib/Target/X86/X86ISelLowering.cpp
* Contains the x86 specialisation; Guard 'Value' used by the SelectionDAG algorithm.
Function-based Instrumentation:
* The MSVC doesn't inline the stack guard comparison in every function. Instead, a call to '__security_check_cookie' is added to the epilogue before every return instructions.
* To support function-based instrumentation, this patch is
* adding a function to get the function-based check (llvm 'Value', see include/llvm/Target/TargetLowering.h),
* If provided, the stack protection instrumentation won't be inlined and a call to that function will be added to the prologue.
* modifying (SelectionDAGISel.cpp) do avoid producing basic blocks used for inline instrumentation,
* generating the function-based instrumentation during the ISEL pass (SelectionDAGBuilder.cpp),
* if FastISEL (not SelectionDAG), using the fallback which rely on the same function-based implemented over intermediate representation (StackProtector.cpp).
Modifications
* adding support for MSVC (lib/Target/X86/X86ISelLowering.cpp)
* adding support function-based instrumentation (lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp, .h)
Results
* IR generated instrumentation:
```
clang-cl /GS test.cc /Od /c -mllvm -print-isel-input
```
```
*** Final LLVM Code input to ISel ***
; Function Attrs: nounwind sspstrong
define i32 @"\01?example@@YAHHH@Z"(i32 %offset, i32 %index) #0 {
entry:
%StackGuardSlot = alloca i8* <<<-- Allocated guard slot
%0 = call i8* @llvm.stackguard() <<<-- Loading Stack Guard value
call void @llvm.stackprotector(i8* %0, i8** %StackGuardSlot) <<<-- Prologue intrinsic call (store to Guard slot)
%index.addr = alloca i32, align 4
%offset.addr = alloca i32, align 4
%buffer = alloca [10 x i8], align 1
store i32 %index, i32* %index.addr, align 4
store i32 %offset, i32* %offset.addr, align 4
%arraydecay = getelementptr inbounds [10 x i8], [10 x i8]* %buffer, i32 0, i32 0
%1 = load i32, i32* %index.addr, align 4
call void @llvm.memset.p0i8.i32(i8* %arraydecay, i8 -52, i32 %1, i32 1, i1 false)
%2 = load i32, i32* %index.addr, align 4
%arrayidx = getelementptr inbounds [10 x i8], [10 x i8]* %buffer, i32 0, i32 %2
%3 = load i8, i8* %arrayidx, align 1
%conv = sext i8 %3 to i32
%4 = load volatile i8*, i8** %StackGuardSlot <<<-- Loading Guard slot
call void @__security_check_cookie(i8* %4) <<<-- Epilogue function-based check
ret i32 %conv
}
```
* SelectionDAG generated instrumentation:
```
clang-cl /GS test.cc /O1 /c /FA
```
```
"?example@@YAHHH@Z": # @"\01?example@@YAHHH@Z"
# BB#0: # %entry
pushl %esi
subl $16, %esp
movl ___security_cookie, %eax <<<-- Loading Stack Guard value
movl 28(%esp), %esi
movl %eax, 12(%esp) <<<-- Store to Guard slot
leal 2(%esp), %eax
pushl %esi
pushl $204
pushl %eax
calll _memset
addl $12, %esp
movsbl 2(%esp,%esi), %esi
movl 12(%esp), %ecx <<<-- Loading Guard slot
calll @__security_check_cookie@4 <<<-- Epilogue function-based check
movl %esi, %eax
addl $16, %esp
popl %esi
retl
```
Reviewers: kcc, pcc, eugenis, rnk
Subscribers: majnemer, llvm-commits, hans, thakis, rnk
Differential Revision: http://reviews.llvm.org/D20346
llvm-svn: 272053
Currently the only way to use the (V)MOVNTDQA nontemporal vector loads instructions is through the int_x86_sse41_movntdqa style builtins.
This patch adds support for lowering nontemporal loads from general IR, allowing us to remove the movntdqa builtins in a future patch.
We currently still fold nontemporal loads into suitable instructions, we should probably look at removing this (and nontemporal stores as well) or at least make the target's folding implementation aware that its dealing with a nontemporal memory transaction.
There is also an issue that VMOVNTDQA only acts on 128-bit vectors on pre-AVX2 hardware - so currently a normal ymm load is still used on AVX1 targets.
Differential Review: http://reviews.llvm.org/D20965
llvm-svn: 272010
We currently only combine to blend+zero if the target value type has 8 elements or less, but this was missing a lot of cases where the combined mask had been widened.
This change makes it so we use the combined mask to determine the blend value type, allowing us to catch more widened cases.
llvm-svn: 272003
Windows itanium is nearly identical to windows-msvc (MS ABI for C, itanium for
C++). Enable the TLS support for the target similar to the MSVC model.
llvm-svn: 271797
The AVX2 v16i16 shift lowering works by unpacking to 2 x v8i32, performing the shift and then truncating the result.
The unpacking is used to place the values in the upper 16-bits so that we can correctly sign-extend for SRA shifts. Unfortunately we weren't ensuring that the lower 16-bits were zero to ensure that SHL correctly shifts in zero bits.
llvm-svn: 271796
This patch begins adding support for lowering to the XOP VPERMIL2PD/VPERMIL2PS shuffle instructions - adding the X86ISD::VPERMIL2 opcode and cleaning up the usage.
The internal llvm intrinsics were assuming the shuffle mask operand was the same type as the float/double input operands (I guess to simplify the intrinsic definitions in X86InstrXOP.td to a single value type). These needed changing to integer types (matching the clang builtin and the AMD intrinsics definitions), an auto upgrade path is added to convert old calls.
Mask decoding/target shuffle support will be added in future patches.
Differential Revision: http://reviews.llvm.org/D20049
llvm-svn: 271633
Summary:
In PR29973 Sanjay Patel reported an assertion failure when a certain
loop was optimized, for a target without SSE2 support. It turned out
this was because of the AVG pattern detection introduced in rL253952.
Prevent the assertion failure by bailing out early in
`detectAVGPattern()`, if the target does not support SSE2.
Also add a minimized test case.
Reviewers: congh, eli.friedman, spatel
Subscribers: emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D20905
llvm-svn: 271548
Although this was intended to be NFC, the test case wiggle shows a change in
code scheduling/RA caused by a difference in the SDLoc() generation.
Depending on how you look at it, this is the (dis)advantage of exact checking
in regression tests.
llvm-svn: 271526
This patch removes the llvm intrinsics (V)CVTTPS2DQ and VCVTTPD2DQ truncation (round to zero) conversions and auto-upgrades to FP_TO_SINT calls instead.
Note: I looked at updating CVTTPD2DQ as well but this still requires a lot more work to correctly lower.
Differential Revision: http://reviews.llvm.org/D20860
llvm-svn: 271510
I'm not sure why this was missing for so long.
This also exposed that we were picking floating point 256-bit VMOVNTPS for some integer types in normal isel for AVX1 even though VMOVNTDQ is available. In practice it doesn't matter due to the execution dependency fix pass, but it required extra isel patterns. Fixing that in a follow up commit.
llvm-svn: 271481
When the index is known to be constant 0, insert directly into the the low half,
instead of spilling, performing the insert in-memory, and reloading.
Differential Revision: http://reviews.llvm.org/D20763
llvm-svn: 271428
Summary:
Re-enable lifetime-start-on-first-use for stack coloring,
but explicitly disable it for slots with more than one start
or end lifetime marker.
Bug: 27903
Reviewers: wmi, tejohnson, qcolombet, gbiv
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20739
llvm-svn: 271412