better name) is the option that SmallTalk can use to intercept all
overflows, including unsigned. I added some testcases so we don't
break anything.
Also included is another patch from David for += and friends.
llvm-svn: 68267
- Finish up support for converting UTF8->UTF16 to support ObjC @"string" constants.
Remove warning from CheckObjCString.
As the FIXME in the test case indicates, I still have a bug to work out (apparently with \u handling).
llvm-svn: 68245
#ifdef'd out the 5 conversion routines that we don't currently need.
Still need a bit more work in GetAddrOfConstantCFString(). Added a FIXME to indicate this.
Expect to remove the FIXME today...
llvm-svn: 68208
- Small structures are returned in a register if:
1. They fit nicely in a register.
2. All fields fit nicely in a register.
(more or less)
- We now pass the first 5000 ABITests if unions are disabled.
- <rdar://problem/6497882> [irgen] x86-32 ABI compatibility with
small structs
llvm-svn: 68197
element structures", which have different ABI rules.
- Current return-arguments-32 status is: 1 out of 1000 failures (-7)
- Also, vectors inside "single element structs" require special
handling.
llvm-svn: 68196
types. It is no longer needed now that the code generator
re-lays-out interfaces if they are defines after being laid out
from a forward decl.
llvm-svn: 68194
- <rdar://problem/6732143> Crash when generating @synchronize for
zero-cost exception
- Thanks to Anders for helping track down the problem.
llvm-svn: 68186
- Notably, set section on cfstring literal string data (for now, this
is done everywhere because it matches what we were already doing
for the CFString data itself)
- <rdar://problem/6599098> [irgen] linker requires objc string data
to go into cstring
llvm-svn: 68160
Changed GenerateConstantString() to take an ObjCStringLiteral (instead of a std::string). While this isn't strictly necessary, it seems cleaner and allows us to cache to "containsNonAscii" if necessary (to avoid checking in both Sema and CodeGen).
llvm-svn: 68114
representation handles the various ways in which one can name a
template, including unqualified references ("vector"), qualified
references ("std::vector"), and dependent template names
("MetaFun::template apply").
One immediate effect of this change is that the representation of
nested-name-specifiers in type names for class template
specializations (e.g., std::vector<int>) is more accurate. Rather than
representing std::vector<int> as
std::(vector<int>)
we represent it as
(std::vector)<int>
which more closely follows the C++ grammar.
Additionally, templates are no longer represented as declarations
(DeclPtrTy) in Parse-Sema interactions. Instead, I've introduced a new
OpaquePtr type (TemplateTy) that holds the representation of a
TemplateName. This will simplify the handling of dependent
template-names, once we get there.
llvm-svn: 68074