Only when load-hoisted we can be sure the base pointer is invariant
during the SCoP's execution. Most of the time it would be added to
the required hoists for the alias checks anyway, except with
-polly-ignore-aliasing, -polly-use-runtime-alias-checks=0 or if
AliasAnalysis is already sure it doesn't alias with anything
(for instance if there is no other pointer to alias with).
Two more parts in Polly assume that this load-hoisting took place:
- setNewAccessRelation() which contains an assert which tests this.
- BlockGenerator which would use to the base ptr from the original
code if not load-hoisted (if the access expression is regenerated)
Differential Revision: https://reviews.llvm.org/D30694
llvm-svn: 297195
There is no point in optimizing unreachable code, hence our test cases should
always return.
This commit is part of a series that makes Polly more robust on the presence of
unreachables.
llvm-svn: 297158
These test cases should work in combination with
https://reviews.llvm.org/D12676, but became outdated over time. Update them
in preparation of discussions with Daniel Berlin on how to represent unreachable
in the post-dominator tree.
llvm-svn: 297157
Our current scop modeling enters an infinite loop when trying to model code
that has unreachable instructions (e.g.,
test/ScopInfo/BoundChecks/single-loop.ll), as the number of basic blocks
returned by the LLVM Loop* does not include unreachable basic blocks that
branch off from the core loop body. This arises for example in the following
piece of code:
for (i = 0; i < N; i++) {
if (i > 1024)
abort(); <- this abort might be translated to an
unreachable
A[i] = ...
}
This patch adds these unreachable basic blocks in our per loop basic block
count to ensure that the schedule construction does not assume a loop has been
processed completely, despite certain unreachable basic blocks still remaining.
The infinite loop is only observable in combination with
https://reviews.llvm.org/D12676 or a similar patch.
llvm-svn: 297156
Scops that exit with an unreachable are today still permitted, but make little
sense to optimize. We therefore can already skip them during scop detection.
This speeds up scop detection in certain cases and also ensures that bugpoint
does not introduce unreachables when reducing test cases.
In practice this change should have little impact, as the performance of
unreachable code is unlikely to matter.
This commit is part of a series that makes Polly more robust in the presence
of unreachables.
llvm-svn: 297151
There is no point in optimizing unreachable code, hence our test cases should
always return.
This commit is part of a series that makes Polly more robust on the presence of
unreachables.
llvm-svn: 297150
There is no point in optimizing unreachable code, hence our test cases should
always return.
This commit is part of a series that makes Polly more robust on the presence of
unreachables.
llvm-svn: 297147
r296992 made ScalarEvolution's CompareValueComplexity less aggressive,
and that broke the polly test being fixed in this change. This change
explicitly bumps CompareValueComplexity in said test case to make it
pass.
Can someone from the polly team please can give me an idea on if this
case is important enough to have
scalar-evolution-max-value-compare-depth be 3 by default?
llvm-svn: 296994
Some Polly ACC test cases fail without a working NVPTX backend. We explicitly
specify this dependence in REQUIRES. Alternatively, we could have only marked
polly-acc as supported in case the NVPTX backend is available, but as we might
use other backends in the future, this does not seem to be the best choice.
For this to work, we also need to make the 'targets_to_build' information
available.
Suggested-by: Michael Kruse <llvm@meinersbur.de>
llvm-svn: 296853
These loads cannot be savely hoisted as the condition guarding the
non-affine region cannot be duplicated to also protect the hoisted load
later on. Today they are dropped in ScopInfo. By checking for this early, we
do not even try to model them and possibly can still optimize smaller regions
not containing this specific required-invariant load.
llvm-svn: 296744
Multi-disjunct access maps can easily result in inbound assumptions which
explode in case of many memory accesses and many parameters. This change reduces
compilation time of some larger kernel from over 15 minutes to less than 16
seconds.
Interesting is the test case test/ScopInfo/multidim_param_in_subscript.ll
which has a memory access
[n] -> { Stmt_for_body3[i0, i1] -> MemRef_A[i0, -1 + n - i1] }
which requires folding, but where only a single disjunct remains. We can still
model this test case even when only using limited memory folding.
For people only reading commit messages, here the comment that explains what
memory folding is:
To recover memory accesses with array size parameters in the subscript
expression we post-process the delinearization results.
We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
range of exp1(i) - may be preferrable. Specifically, for cases where we
know exp1(i) is negative, we want to choose the latter expression.
As we commonly do not have any information about the range of exp1(i),
we do not choose one of the two options, but instead create a piecewise
access function that adds the (-1, N) offsets as soon as exp1(i) becomes
negative. For a 2D array such an access function is created by applying
the piecewise map:
[i,j] -> [i, j] : j >= 0
[i,j] -> [i-1, j+N] : j < 0
After this patch we generate only the first case, except for situations where
we can proove the first case to be invalid and can consequently select the
second without introducing disjuncts.
llvm-svn: 296679
Without this simplification for a loop nest:
void foo(long n1_a, long n1_b, long n1_c, long n1_d,
long p1_b, long p1_c, long p1_d,
float A_1[][p1_b][p1_c][p1_d]) {
for (long i = 0; i < n1_a; i++)
for (long j = 0; j < n1_b; j++)
for (long k = 0; k < n1_c; k++)
for (long l = 0; l < n1_d; l++)
A_1[i][j][k][l] += i + j + k + l;
}
the assumption:
n1_a <= 0 or (n1_a > 0 and n1_b <= 0) or
(n1_a > 0 and n1_b > 0 and n1_c <= 0) or
(n1_a > 0 and n1_b > 0 and n1_c > 0 and n1_d <= 0) or
(n1_a > 0 and n1_b > 0 and n1_c > 0 and n1_d > 0 and
p1_b >= n1_b and p1_c >= n1_c and p1_d >= n1_d)
is taken rather than the simpler assumption:
p9_b >= n9_b and p9_c >= n9_c and p9_d >= n9_d.
The former is less strict, as it allows arbitrary values of p1_* in case, the
loop is not executed at all. However, in practice these precise constraints
explode when combined across different accesses and loops. For now it seems
to make more sense to take less precise, but more scalable constraints by
default. In case we find a practical example where more precise constraints
are needed, we can think about allowing such precise constraints in specific
situations where they help.
This change speeds up the new test case from taking very long (waited at least
a minute, but it probably takes a lot more) to below a second.
llvm-svn: 296456
This patch adds an option to build against a version of libisl already
installed on the system. The installation is autodetected using the
pkg-config file shipped with isl.
The detection of the library is in the FindISL.cmake module that creates
an imported target.
Contributed-by: Philip Pfaffe <philip.pfaffe@gmail.com>
Differential Revision: https://reviews.llvm.org/D30043
llvm-svn: 296361
These verify that some scalars are not mapped because it would be
incorrect to do so.
For these check we verify that no transformation has been executed from
output of the pass's '-analyze'. Adding optimization remarks is not useful
as it would result in too many messages, even repeated ones. I avoided
checking the '-debug-only=polly-delicm' output which is an antipattern.
llvm-svn: 296348
We can not perform the dependence analysis and, consequently, the parallel
code generation in case the schedule tree contains extension nodes.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D30394
llvm-svn: 296325
Control flow would flow-through after the check whether the operations
quota exceeded, with the intention that it would later be caught by
Knowledge::isUsable(). However, the Knowledge constructor has its own
assertions to check consistency which would fail if its fields have only
been initialized partially because some sets have been computed correctly
before the operations quota takes effect.
Fix by erroring-out early instead of falling-throught into the code that
might expect that everything has been computed correctly. For robustness,
also bail-out if any of the fields contain nullptr values instead of
relying on isl always setting exactly this error code if something went
wrong.
This should fix the
perf-x86_64-penryn-O3-polly-before-vectorizer-unprofitable
(-polly-process-unprofitable -polly-position=before-vectorizer
-polly-enable-delicm) buildbot.
llvm-svn: 296022
NonowningIslPtr<isl_X> was used as types of function parameters when the
function does not consume the isl object, i.e. an __isl_keep parameter.
The alternatives are:
1. IslPtr<isl_X>
This has additional calls to isl_X_copy and isl_X_free to
increase/decrease the reference counter even though not needed. The
caller already owns a reference to the isl object.
2. const IslPtr<isl_X>&
This does not change the reference counter, but requires an
additional load to get the pointer to the isl object (instead of just
passing the pointer itself).
Moreover, the compiler cannot rely on the constness of the pointer
and has to reload the pointer every time it writes to memory (unless
alias analysis such as TBAA says it is not possible).
The isl C++ bindings currently in development do not have an equivalent
to NonowningIslPtr and adding one would make the binding more
complicated and its advantage in performance is small. In order to
simplify the transition to these C++ bindings, remove NonowningIslPtr.
Change every former use of it to alternative 2 mentioned aboce
(const IslPtr<isl_X>&).
llvm-svn: 295998
Once a StmtSchedule is created, only its domain is used anywhere within
DependenceInfo::calculateDependences. So, we choose to return the
wrapped domain of the union_map rather than the entire union_map.
However, we still build the union_map first within collectInfo(). It is
cleaner to first build the entire union_map and then pull the domain out in
one shot, rather than repeatedly extracting the domain in bits and pieces
from accdom.
Contributed-by: Siddharth Bhat <siddu.druid@gmail.com>
Differential Revision: https://reviews.llvm.org/D30208
llvm-svn: 295984
Marking a pass as preserved is necessary if any Polly pass uses it, even
if it is not preserved within the generated code. Not marking it would
cause the the Polly pass chain to be interrupted. It is not used by any
Polly pass anymore, hence we can remove all references to it.
llvm-svn: 295983
Currently, pattern based optimizations of Polly can identify matrix
multiplication and optimize it according to BLIS matmul optimization pattern
(see ScheduleTreeOptimizer for details). This patch makes optimizations
based on pattern matching be enabled by default.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D30293
llvm-svn: 295958
These tests were not included in the main DeLICM commit. These check the
cases where zone analysis cannot be successful because of assumption
violations.
We use the LLVM optimization remark infrastructure as it seems to be the
best fit for this kind of messages. I tried to make use if the
OptimizationRemarkEmitter. However, it would insert additional function
passes into the pass manager to get the hotness information. The pass
manager would insert them between the flatten pass and delicm, causing
the ScopInfo with the flattened schedule being thrown away.
Differential Revision: https://reviews.llvm.org/D30253
llvm-svn: 295846
There is no template specialization for cl::parser<unsigned long> such
that parsing an cl::opt<unsigned long> command line argument will fail.
Use opt<int> instead which has an associated parser.
llvm-svn: 295832
We only ever use the wrapped domain of AccessSchedule, so stop
creating an entire union_map and then pulling the domain out.
Reviewers: grosser
Tags: #polly
Contributed-by: Siddharth Bhat <siddu.druid@gmail.com>
Differential Revision: https://reviews.llvm.org/D30179
llvm-svn: 295726
Implement the -polly-delicm pass. The pass intends to undo the
effects of LoopInvariantCodeMotion (LICM) which adds additional scalar
dependencies into SCoPs. DeLICM will try to map those scalars back to
the array elements they were promoted from, as long as the array
element is unused.
The is the main patch from the DeLICM/DePRE patch series. It does not
yet undo GVN PRE for which additional information about known values
is needed and does not handle PHI write accesses that have have no
target. As such its usefulness is limited. Patches for these issues
including regression tests for error situatons will follow.
Reviewers: grosser
Differential Revision: https://reviews.llvm.org/D24716
llvm-svn: 295713
This is currently the minimum required version by LLVM. Since LLVM is
needed to build Polly, we also require at least that version.
Suggested-by: Philip Pfaffe <philip.pfaffe@gmail.com>
llvm-svn: 295672
isl headers are currently missing in a Polly installation. Because the
Polly headers depend on those, code can't be compiled against an
installed Polly.
This patch installs the isl headers. I left a TODO, as optionally it
should be possible to use a system version of isl instead of the one
shipped with Polly.
When compiling, clients of the installation need to add
-I${PREFIX}/include/polly/ to there include path right now, because
there currently is no way to export this path automatically.
Contributed-by: Philip Pfaffe <philip.pfaffe@gmail.com>
Differential Revision: https://reviews.llvm.org/D29931
llvm-svn: 295671
Instead of counting the number of read-only accesses, we now count the number of
distinct read-only array references when checking if a run-time alias check
may be too complex. The run-time alias check is quadratic in the number of
base pointers, not the number of accesses.
Before this change we accidentally skipped SPEC's lbm test case.
llvm-svn: 295567
This change gets rid of the need for zero padding, makes the reduction
computation code more similar to the normal dependence computation, and also
better documents what we do at the moment.
Making the dependence computation for reductions a little bit easier to
understand will hopefully help us to further reduce code duplication.
This reduces the time spent only in the reduction dependence pass from 260ms to
150ms for test/DependenceInfo/reduction_sequence.ll. This is a reduction of over
40% in dependence computation time.
This change was inspired by discussions with Michael Kruse, Utpal Bora,
Siddharth Bhat, and Johannes Doerfert. It can hopefully lay the base for further
cleanups of the reduction code.
llvm-svn: 295550
This test case is a mini performance test case that shows the time needed for a
couple of simple reductions. It takes today about 325ms on my machine to run
this test case through 'opt' with scop construction and reduction detection. It
can be used as mini-proxy for further tuning of the reduction code.
Generally we do not commit performance test cases, but as this is very
small and also very fast it seems OK to keep it in the lit test suite.
This test case will also help to verify that future changes to the reduction
code will not affect the ordering of the reduction sets and will consequently
not cause spurious performance changes that only result from reordering of
dependences in the reduction set.
llvm-svn: 295549