The issue was that the MatchingInlineAsm and VariantID args to the
MatchInstructionImpl function weren't being set properly. Specifically, when
parsing intel syntax, the parser thought it was parsing inline assembly in the
at&t dialect; that will never be the case.
The crash was caused when the emitter tried to emit the instruction, but the
operands weren't set. When parsing inline assembly we only set the opcode, not
the operands, which is used to lookup the instruction descriptor.
rdar://13854391 and PR15945
Also, this commit reverts r176036. Now that we're correctly parsing the intel
syntax the pushad/popad don't match properly. I've reimplemented that fix using
a MnemonicAlias.
llvm-svn: 181620
the "identifier" parsed by the frontend callback by skipping forward
until we've consumed a token that ends at the point dictated by the
callback.
In addition, inform the callback when it's parsing an unevaluated
operand (e.g. mov eax, LENGTH A::x) as opposed to an evaluated one
(e.g. mov eax, [A::x]).
This commit depends on a clang commit.
llvm-svn: 180978
unable to handle cases such as __asm mov eax, 8*-8.
This patch also attempts to simplify the state machine. Further, the error
reporting has been improved. Test cases included, but more will be added to
the clang side shortly.
rdar://13668445
llvm-svn: 179719
immediate displacement. Specifically, add support for generating the proper IR.
We've been able to parse this for some time now. Test case to be added on the
clang side.
Part of rdar://13453209
llvm-svn: 179393
can build up the identifier string. No test case as support for looking up
these type of identifiers hasn't been implemented on the clang side.
Part of rdar://13499009
llvm-svn: 179336
wasn't always the start of the operand. If there was a symbol reference, then
Start pointed to that token. It's very likely there are other places that need
to be updated.
llvm-svn: 179210
Test cases that regressed due to r179115, plus a few more, were added in
r179182. Original commit message below:
[ms-inline asm] Use parsePrimaryExpr in lieu of parseExpression if we need to
parse an identifier. Otherwise, parseExpression may parse multiple tokens,
which makes it impossible to properly compute an immediate displacement.
An example of such a case is the source operand (i.e., [Symbol + ImmDisp]) in
the below example:
__asm mov eax, [Symbol + ImmDisp]
Part of rdar://13611297
llvm-svn: 179187
parse an identifier. Otherwise, parseExpression may parse multiple tokens,
which makes it impossible to properly compute an immediate displacement.
An example of such a case is the source operand (i.e., [Symbol + ImmDisp]) in
the below example:
__asm mov eax, [Symbol + ImmDisp]
The existing test cases exercise this patch.
rdar://13611297
llvm-svn: 179115
rather than deriving the StringRef from the Start and End SMLocs.
Using the Start and End SMLocs works fine for operands such as [Symbol], but
not for operands such as [Symbol + ImmDisp]. All existing test cases that
reference a variable exercise this patch.
rdar://13602265
llvm-svn: 179109
memory operands.
Essentially, this layers an infix calculator on top of the parsing state
machine. The scale on the index register is still expected to be an immediate
__asm mov eax, [eax + ebx*4]
and will not work with more complex expressions. For example,
__asm mov eax, [eax + ebx*(2*2)]
The plus and minus binary operators assume the numeric value of a register is
zero so as to not change the displacement. Register operands should never
be an operand for a multiply or divide operation; the scale*indexreg
expression is always replaced with a zero on the operand stack to prevent
such a case.
rdar://13521380
llvm-svn: 178881
qualifiers.
This patch only adds support for parsing these identifiers in the
X86AsmParser. The front-end interface isn't capable of looking up
these identifiers at this point in time. The end result is the
compiler now errors during object file emission, rather than at
parse time. Test case coming shortly.
Part of rdar://13499009 and PR13340
llvm-svn: 178566
an X86Operand, but also performs a Sema lookup and adds the sizing directive
when appropriate. Use this when parsing a bracketed statement. This is
necessary to get the instruction matching correct as well. Test case coming
on clang side.
rdar://13455408
llvm-svn: 177439