Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could expose a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit 7c51f02eff because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit bdc6974f92 because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
Our rules to determine if the throw expression are within the variable
scope were giving a false negative result in case the throw expression
would appear within a decltype in a nested function declaration.
Per P2266R3, the relevant rule is: [expr.prim.id.unqual]/2
```
if the id-expression (possibly parenthesized) is the operand of a throw-expression, and names an implicitly movable entity that belongs to a scope that does not contain the compound-statement of the innermost lambda-expression, try-block , or function-try-block (if any) whose compound-statement or ctor-initializer encloses the throw-expression.
```
This fixes PR54341.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D127075
See PR51708.
Attempting copy elision in dependent contexts with invalid variable,
such as a variable with incomplete type, would cause a crash when attempting
to calculate it's alignment.
The fix is to just skip this optimization on invalid VarDecl, as otherwise this
provides no benefit to error recovery: This functionality does not try to
diagnose anything, it only calculates a flag which will affect where the
variable will be allocated during codegen.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rtrieu
Differential Revision: https://reviews.llvm.org/D109191
After taking C++98 implicit moves out in D104500,
we put it back in, but now in a new form which preserves
compatibility with pure C++98 programs, while at the same time
giving almost all the goodies from P1825.
* We use the exact same rules as C++20 with regards to which
id-expressions are move eligible. The previous
incarnation would only benefit from the proper subset which is
copy ellidable. This means we can implicit move, in addition:
* Parameters.
* RValue references.
* Exception variables.
* Variables with higher-than-natural required alignment.
* Objects with different type from the function return type.
* We preserve the two-overload resolution, with one small tweak to the
first one: If we either pick a (possibly converting) constructor which
does not take an rvalue reference, or a user conversion operator which
is not ref-qualified, we abort into the second overload resolution.
This gives C++98 almost all the implicit move patterns which we had created test
cases for, while at the same time preserving the meaning of these
three patterns, which are found in pure C++98 programs:
* Classes with both const and non-const copy constructors, but no move
constructors, continue to have their non-const copy constructor
selected.
* We continue to reject as ambiguous the following pattern:
```
struct A { A(B &); };
struct B { operator A(); };
A foo(B x) { return x; }
```
* We continue to pick the copy constructor in the following pattern:
```
class AutoPtrRef { };
struct AutoPtr {
AutoPtr(AutoPtr &);
AutoPtr();
AutoPtr(AutoPtrRef);
operator AutoPtrRef();
};
AutoPtr test_auto_ptr() {
AutoPtr p;
return p;
}
```
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: Quuxplusone
Differential Revision: https://reviews.llvm.org/D105756
Named return of a variable with aligned attribute would
trip an assert in case alignment was dependent.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D105380
This extends the effects of [[ http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1825r0.html | P1825 ]] to all C++ standards from C++11 up to C++20.
According to Motion 23 from Cologne 2019, P1825R0 was accepted as a Defect Report, so we retroactively apply this all the way back to C++11.
Note that we also remove implicit moves from C++98 as an extension
altogether, since the expanded first overload resolution from P1825
can cause some meaning changes in C++98.
For example it can change which copy constructor is picked when both const
and non-const ones are available.
This also rips out warn_return_std_move since there are no cases where it would be worthwhile to suggest it.
This also fixes a bug with bailing into the second overload resolution
when encountering a non-rvref qualified conversion operator.
This was unnoticed until now, so two new test cases cover these.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D104500
This change caused build errors related to move-only __block variables,
see discussion on https://reviews.llvm.org/D99696
> This expands NRVO propagation for more cases:
>
> Parse analysis improvement:
> * Lambdas and Blocks with dependent return type can have their variables
> marked as NRVO Candidates.
>
> Variable instantiation improvements:
> * Fixes crash when instantiating NRVO variables in Blocks.
> * Functions, Lambdas, and Blocks which have auto return type have their
> variables' NRVO status propagated. For Blocks with non-auto return type,
> as a limitation, this propagation does not consider the actual return
> type.
>
> This also implements exclusion of VarDecls which are references to
> dependent types.
>
> Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
>
> Reviewed By: Quuxplusone
>
> Differential Revision: https://reviews.llvm.org/D99696
This also reverts the follow-on change which was hard to tease apart
form the one above:
> "[clang] Implement P2266 Simpler implicit move"
>
> This Implements [[http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2266r1.html|P2266 Simpler implicit move]].
>
> Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
>
> Reviewed By: Quuxplusone
>
> Differential Revision: https://reviews.llvm.org/D99005
This reverts commits 1e50c3d785 and
bf20631782.
This reworks a small set of tests, as preparatory work for implementing
P2266.
* Run for more standard versions, including c++2b.
* Normalize file names and run commands.
* Adds some extra tests.
New Coroutine tests taken from Aaron Puchert's D68845.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D99225
Review D88220 turns out to have some pretty severe bugs, but I *think*
this patch fixes them.
Paper P1825 is supposed to enable implicit move from "non-volatile objects
and rvalue references to non-volatile object types." Instead, what was committed
seems to have enabled implicit move from "non-volatile things of all kinds,
except that if they're rvalue references then they must also refer to non-volatile
things." In other words, D88220 accidentally enabled implicit move from
lvalue object references (super yikes!) and also from non-object references
(such as references to functions).
These two cases are now fixed and regression-tested.
Differential Revision: https://reviews.llvm.org/D98971
Implement all of P1825R0:
- implicitly movable entity can be an rvalue reference to non-volatile
automatic object.
- operand of throw-expression can be a function or catch-clause parameter
(support for function parameter has already been implemented).
- in the first overload resolution, the selected function no need to be
a constructor.
- in the first overload resolution, the first parameter of the selected
function no need to be an rvalue reference to the object's type.
This patch also removes the diagnostic `-Wreturn-std-move-in-c++11`.
Differential Revision: https://reviews.llvm.org/D88220
In implicitly movable test, a two-stage overload resolution is performed.
If the first overload resolution selects a deleted function, Clang directly
performs the second overload resolution, without checking whether the
deleted function matches the additional criteria.
This patch fixes the above problem.
Reviewed By: Quuxplusone
Differential Revision: https://reviews.llvm.org/D92936
In implicitly movable test, a two-stage overload resolution is performed.
If the first overload resolution selects a deleted function, Clang directly
performs the second overload resolution, without checking whether the
deleted function matches the additional criteria.
This patch fixes the above problem.
Reviewed By: Quuxplusone
Differential Revision: https://reviews.llvm.org/D92936
In C++11 standard, to become implicitly movable, the expression in return
statement should be a non-volatile automatic object. CWG1579 changed the rule
to require that the expression only needs to be an automatic object. C++14
standard and C++17 standard kept this rule unchanged. C++20 standard changed
the rule back to require the expression be a non-volatile automatic object.
This should be a typo in standards, and VD should be non-volatile.
Differential Revision: https://reviews.llvm.org/D88295