This can be set up front, and used only as a cache. This avoids a
field that looks like it requires MIR serialization.
I believe this fixes 2 bugs for CodeView. First, this addresses a
FIXME that the flag -diable-debug-info-print only works with
DWARF. Second, it fixes emitting debug info with emissionKind NoDebug.
ValueMap should only be necessary if the IR values can be
replaced. This is only used during codegen, when it's illegal to
change the underlying IR. This allows using the default copy
constructor for X86MachineFunctionInfo.
I'm not happy about targets keeping state here that's only used in one
specific pass, but we don't have a better place to put it right now.
There's no reason to create these immediately. They can be created in
the prolog/epilog code like CSR spills. There's probably a cleaner way
to do this by utilizing the CSR spill code.
This makes the frame index used transient state for
PrologEpilogInserter, and thus makes serialization easier. Really this
doesn't need to be saved here but there isn't really a better place
for it.
getMinClassForRegBank and getRegClassForTypeOnBank were basically
identical functions with different APIs. Consolidate on the version
that uses LLT instead of a bitwidth, since that would be more
appropriate to use in a generic API. Keep getMinClassForRegBank around
for now, since copies are a special case that can't simply read the
type from the register operands.
These things are checked in the verifier already, so there's not much
point in re-asserting them here. They aren't directly verified for the
copy-like extension artifacts, but the incorrect output copies would
be caught on the other side.
This patch adds one SPIRV analysis pass and extends AsmPrinter. It is
essential for minimum SPIR-V output. Also it adds several simplest tests
to show that the target basically works.
Differential Revision: https://reviews.llvm.org/D116465
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
The patch adds SPIRVLegalizerInfo, SPIRVInstructionSelector and
SPIRV-specific utilities.
Differential Revision: https://reviews.llvm.org/D116464
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
The patch contains target lowering for SPIRV. Also it implements
TargetMachine and AsmPrinter.
Differential Revision: https://reviews.llvm.org/D116463
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
The patch adds SPIRV-specific MC layer implementation, SPIRV object
file support and SPIRVInstPrinter.
Differential Revision: https://reviews.llvm.org/D116462
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
Differential Revision: https://reviews.llvm.org/D115786
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
This patch contains enough for lib/Target/SPIRV to compile: a basic
SPIRVTargetMachine and SPIRVTargetInfo.
Differential Revision: https://reviews.llvm.org/D115009
Authors: Aleksandr Bezzubikov, Lewis Crawford, Ilia Diachkov,
Michal Paszkowski, Andrey Tretyakov, Konrad Trifunovic
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Ilia Diachkov <iliya.diyachkov@intel.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
In some cases, an error constructing a compiler or assembler job could
leave the Inputs in a state that the code for constructing the linker
job was not ready for.
The linker wrapper is used to perform linking and wrapping of embedded
device object files. Currently its internals are not able to be tested
easily. This patch adds the `--dry-run` and `--print-wrapped-module`
options to investigate the link jobs that will be run along with the
wrapped code that will be created to register the binaries.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D124039
LLVM BPF pass SimplifyPatchable is used to do necessary
code conversion for CO-RE operations. When studying bpf
selftest 'exhandler', I found a corner case not handled properly.
The following is the C code, modified from original 'exhandler'
code.
int g;
int test(struct t1 *p) {
struct t2 *q = p->q;
if (q)
return 0;
struct t3 *f = q->f;
if (!f) g = 5;
return 0;
}
For code:
struct t3 *f = q->f;
if (!f) ...
The IR before BPFMISimplifyPatchable pass looks like:
%5:gpr = LD_imm64 @"llvm.t2:0:8$0:1"
%6:gpr = LDD killed %5:gpr, 0
%7:gpr = LDD killed %6:gpr, 0
JNE_ri killed %7:gpr, 0, %bb.3
JMP %bb.2
Note that compiler knows q = 0 based dataflow and value analysis.
The correct generated code after the pass should be
%5:gpr = LD_imm64 @"llvm.t2:0:8$0:1"
%7:gpr = LDD killed %5:gpr, 0
JNE_ri killed %7:gpr, 0, %bb.3
JMP %bb.2
But the current implementation did further optimization for the
above code and generates
%5:gpr = LD_imm64 @"llvm.t2:0:8$0:1"
JNE_ri killed %5:gpr, 0, %bb.3
JMP %bb.2
which is incorrect.
This patch added a cache to remember those load insns not associated
with CO-RE offset value and will skip these load insns during
transformation.
Differential Revision: https://reviews.llvm.org/D123883
Introduce a method on PyMlirContext (and plumb it through to Python) to
invalidate all of the operations in the live operations map and clear
it. Since Python has no notion of private data, an end-developer could
reach into some 3rd party API which uses the MLIR Python API (that is
behaving correctly with regard to holding references) and grab a
reference to an MLIR Python Operation, preventing it from being
deconstructed out of the live operations map. This allows the API
developer to clear the map when it calls C++ code which could delete
operations, protecting itself from its users.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D123895
There's an existing generic combine that does this for legal types.
This patch adds a RISCV specific combine for W instructions.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D123983
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
Remove constraint that an initializing expression of struct type must have an
associated `Value`. This invariant is not and will not be guaranteed by the
framework, because of potentially uninitialized fields.
Differential Revision: https://reviews.llvm.org/D123961
This fixes a compile-time error recently introduced within the remote
offloading plugin. This patch also removes some extra linker flags that are unnecessary, and adds an explicit abseil linker flag without which we occasionally get problems.
Differential Revision: https://reviews.llvm.org/D119984
Motivation: The intent here is for use in Swift.
When building a clang module for swift consumption, swift adds an
extension block to the module for name lookup purposes. Swift calls
this a SwiftLookupTable. One purpose that this serves is to handle
conflicting names between ObjC classes and ObjC protocols. They exist in
different namespaces in ObjC programs, but in Swift they would exist in
the same namespace. Swift handles this by appending a suffix to a
protocol name if it shares a name with a class. For example, if you have
an ObjC class named "Foo" and a protocol with the same name, the
protocol would be renamed to "FooProtocol" when imported into swift.
When constructing the previously mentioned SwiftLookupTable, we use
Sema::LookupName to look up name conflicts for the previous problem.
By this time, the Parser has long finished its job so the call to
LookupName gets nullptr for its Scope (TUScope will be nullptr
by this point). The C/ObjC path does not have this problem because it
only uses the Scope in specific scenarios. The C++ codepath uses the
Scope quite extensively and will fail early on if the Scope it gets is
null. In our very specific case of looking up ObjC classes with a
specific name, we want to force sema::LookupName to take the C/ObjC
codepath even if C++ or ObjC++ is enabled.
getUpperBound is analogous to getLowerBound(), except for the upper
bound, and is used in range analysis.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D124020
Sequence is an important transform combination primitive that just indicates
transform ops being applied in a row. The simplest version requires fails
immediately if any transformation in the sequence fails. Introducing this
operation allows one to start placing transform IR within other IR.
Depends On D123135
Reviewed By: Mogball, rriddle
Differential Revision: https://reviews.llvm.org/D123664
Summary: Handle casts for ranges working similarly to APSIntType::apply function but for the whole range set. Support promotions, truncations and conversions.
Example:
promotion: char [0, 42] -> short [0, 42] -> int [0, 42] -> llong [0, 42]
truncation: llong [4295033088, 4295033130] -> int [65792, 65834] -> short [256, 298] -> char [0, 42]
conversion: char [-42, 42] -> uint [0, 42]U[4294967254, 4294967295] -> short[-42, 42]
Differential Revision: https://reviews.llvm.org/D103094