Long section names are represented as a slash followed by a numeric
ASCII string. This number is an offset into a string table.
Print the appropriate entry in the string table instead of the less
enlightening /4.
N.B. yaml2obj already does the right thing, this test exercises both
sides of the (de-)serialization.
llvm-svn: 219458
There are two methods in SectionRef that can fail:
* getName: The index into the string table can be invalid.
* getContents: The section might point to invalid contents.
Every other method will always succeed and returning and std::error_code just
complicates the code. For example, a section can have an invalid alignment,
but if we are able to get to the section structure at all and create a
SectionRef, we will always be able to read that invalid alignment.
llvm-svn: 219314
this, and in some circumstances (e.g. reducing particularly large test-cases)
this was causing bugpoint to be killed for hitting open file-handle limits.
No test case: I was only able to trigger this with test cases taking upwards of
10 mins to run.
llvm-svn: 219244
PE/COFF has a special section (.drectve) which can be used to pass options to
the linker (similar to LC_LINKER_OPTION). Add support to llvm-readobj to print
the contents of the section for tests.
llvm-svn: 219228
The plugin API doesn't have the notion of linkonce, only weak. It is up to the
plugin to figure out if a symbol used only for the symbol table can be dropped.
In particular, it has to avoid dropping a linkonce_odr selected by gold if there
is also a weak_odr.
llvm-svn: 219188
The call to copyAttributesFrom will copy the visibility, which might assert
if it were to produce something invalid like "internal hidden". We avoid it
by first creating the replacement with the original linkage and then setting
it to internal affter the call to copyAttributesFrom.
llvm-svn: 219184
When creating an internal function replacement for use in an alias we were
not remapping the argument uses in the instructions to point to the new
arguments.
llvm-svn: 219177
Codeview line tables for functions in different sections refer to a common
STRING_TABLE_SUBSECTION for filenames.
This happens when building with -Gy or with inline functions with MSVC.
Original patch by Jeff Muizelaar!
llvm-svn: 219125
This patch defines a new iterator for the imported symbols.
Make a change to COFFDumper to use that iterator to print
out imported symbols and its ordinals.
llvm-svn: 218915
When the flag is given, the command prints out the COFF import table.
Currently only the import table directory will be printed.
I'm going to make another patch to print out the imported symbols.
The implementation of import directory entry iterator in
COFFObjectFile.cpp was buggy. This patch fixes that too.
http://reviews.llvm.org/D5569
llvm-svn: 218891
r206400 and r209442 added remarks that are disabled by default.
However, if a diagnostic handler is registered, the remarks are sent
unfiltered to the handler. This is the right behaviour for clang, since
it has its own filters.
However, the diagnostic handler exposed in the LTO API receives only the
severity and message. It doesn't have the information to filter by pass
name. For LTO, disabled remarks should be filtered by the producer.
I've changed `LLVMContext::setDiagnosticHandler()` to take a `bool`
argument indicating whether to respect the built-in filters. This
defaults to `false`, so other consumers don't have a behaviour change,
but `LTOCodeGenerator::setDiagnosticHandler()` sets it to `true`.
To make this behaviour testable, I added a `-use-diagnostic-handler`
command-line option to `llvm-lto`.
This fixes PR21108.
llvm-svn: 218784
This commit fixes llvm-cov's function coverage metric by using the number of executed functions instead of the number of fully covered functions.
Differential Revision: http://reviews.llvm.org/D5196
llvm-svn: 218672
Users of getSectionContents shouldn't try to pass in BSS or virtual
sections. In all instances, this is a bug in the code calling this
routine.
N.B. Some COFF implementations (like CL) will mark their BSS sections as
taking space on disk. This would confuse COFFObjectFile into thinking
the section is larger than the file.
llvm-svn: 218549
So in fully linked images when a call is made through a stub it now gets a
comment like the following in the disassembly:
callq 0x100000f6c ## symbol stub for: _printf
indicating the call is to a symbol stub and which symbol it is for. This is
done for branch reference types and seeing if the branch target is in a stub
section and if so using the indirect symbol table entry for that stub and
using that symbol table entries symbol name.
llvm-svn: 218546
files in this directory. If it should be defined anywhere, it should be defined
when building lib/LTO/LTOCodeGenerator.cpp, but we've not had it defined there
for quite some time, so that doesn't really seem to be very important. (It also
would slow down the modules build by creating extra module variants.)
llvm-svn: 218544
get the literal string “Hello world” printed as a comment on the instruction
that loads the pointer to it. For now this is just for x86_64. So for object
files with relocation entries it produces things like:
leaq L_.str(%rip), %rax ## literal pool for: "Hello world\n"
and similar for fully linked images like executables:
leaq 0x4f(%rip), %rax ## literal pool for: "Hello world\n"
Also to allow testing against darwin’s otool(1), I hooked up the existing
-no-show-raw-insn option to the Mach-O parser code, added the new Mach-O
only -full-leading-addr option to match otool(1)'s printing of addresses and
also added the new -print-imm-hex option.
llvm-svn: 218423
This patch removes the old JIT memory manager (which does not provide any
useful functionality now that the old JIT is gone), and migrates the few
remaining clients over to SectionMemoryManager.
http://llvm.org/PR20848
llvm-svn: 218316
This splits the logic for actually looking up coverage information
from the logic that displays it. These were tangled rather thoroughly
so this change is a bit large, but it mostly consists of moving things
around. The coverage lookup logic itself now lives in the library,
rather than being spread between the library and the tool.
llvm-svn: 218184
The filename-equivalence flag allows you to show coverage when your
source files don't have the same full paths as those that generated
the data. This is mostly useful for writing tests in a cross-platform
way.
This wasn't triggering in cases where the filename was derived
directly from the coverage data, which meant certain types of test
case were impossible to write. This patch fixes that, and following
patches involve tests that need this.
llvm-svn: 218108
This format is simply a regular object file with the bitcode stored in a
section named ".llvmbc", plus any number of other (non-allocated) sections.
One immediate use case for this is to accommodate compilation processes
which expect the object file to contain metadata in non-allocated sections,
such as the ".go_export" section used by some Go compilers [1], although I
imagine that in the future we could consider compiling parts of the module
(such as large non-inlinable functions) directly into the object file to
improve LTO efficiency.
[1] http://golang.org/doc/install/gccgo#Imports
Differential Revision: http://reviews.llvm.org/D4371
llvm-svn: 218078
- Replace std::unordered_map with DenseMap
- Use std::pair instead of manually combining two unsigneds
- Assert if insert is called with invalid arguments
- Avoid an unnecessary copy of a std::vector
llvm-svn: 218074
As suggested by David Blaikie, this may be easier to read.
The original warning was:
../tools/llvm-cov/llvm-cov.cpp:53:49: error: ISO C++ forbids zero-size array 'argv' [-Werror=pedantic]
std::string Invocation(std::string(argv[0]) + " " + argv[1]);
It seems to be the case that GCC's warning gets confused and thinks
'argv' is a declaration here. GCC bugzilla issue #61259.
llvm-svn: 218048
This encapsulates how we handle the coverage regions of a file or
function. In the old model, the user had to deal with nested regions,
so they needed to maintain their own auxiliary data structures to get
any useful information out of this. The new API provides a sequence of
non-overlapping coverage segments, which makes it possible to render
coverage information in a single pass and avoids a fair amount of
extra work.
llvm-svn: 217975
It isn't always useful to skip blank lines, as evidenced by the
somewhat awkward use of line_iterator in llvm-cov. This adds a knob to
control whether or not to skip blanks.
llvm-svn: 217960