Add SubgroupId, SubgroupSize and NumSubgroups to GPU dialect ops and add the
lowering of those ops to SPIRV.
Differential Revision: https://reviews.llvm.org/D81042
Summary:
The fusion for tensor_reshape is embedding the information to indexing maps,
thus the exising pattenr also works for indexed_generic ops.
Depends On D80347
Differential Revision: https://reviews.llvm.org/D80348
Summary:
Different from the fusion between generic ops, indices are involved. In this
context, we need to re-map the indices for producer since the fused op is built
on consumer's perspective. This patch supports all combination of the fusion
between indexed_generic ops and generic ops, which includes tests case:
1) generic op as producer and indexed_generic op as consumer.
2) indexed_generic op as producer and generic op as consumer.
3) indexed_generic op as producer and indexed_generic op as consumer.
Differential Revision: https://reviews.llvm.org/D80347
Summary:
Progressive lowering of vector.transpose into an operation that
is closer to an intrinsic, and thus the hardware ISA. Currently
under the common vector transform testing flag, as we prepare
deploying this transformation in the LLVM lowering pipeline.
Reviewers: nicolasvasilache, reidtatge, andydavis1, ftynse
Reviewed By: nicolasvasilache, ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, llvm-commits
Tags: #llvm, #mlir
Differential Revision: https://reviews.llvm.org/D80772
This commit adds basic matrix type support to the SPIR-V dialect
including type definition, IR assembly, parsing, printing, and
(de)serialization.
Differential Revision: https://reviews.llvm.org/D80594
This revision replaces the load + vector.type_cast by appropriate vector transfer
operations. These play more nicely with other vector abstractions and canonicalization
patterns and lower to load/store with or without masks when appropriate.
Differential Revision: https://reviews.llvm.org/D80809
This revision adds custom rewrites for patterns that arise during linalg structured
ops vectorization. These patterns allow the composition of linalg promotion,
vectorization and removal of redundant copies.
The patterns are voluntarily limited and restrictive atm.
More robust behavior will be implemented once more powerful side effect modeling and analyses are available on view/subview.
On the transfer_read side, the following pattern is rewritten:
```
%alloc = ...
[optional] %view = std.view %alloc ...
%subView = subview %allocOrView ...
[optional] linalg.fill(%allocOrView, %cst) ...
...
linalg.copy(%in, %subView) ...
vector.transfer_read %allocOrView[...], %cst ...
```
into
```
[unchanged] %alloc = ...
[unchanged] [optional] %view = std.view %alloc ...
[unchanged] [unchanged] %subView = subview %allocOrView ...
...
vector.transfer_read %in[...], %cst ...
```
On the transfer_write side, the following pattern is rewriten:
```
%alloc = ...
[optional] %view = std.view %alloc ...
%subView = subview %allocOrView...
...
vector.transfer_write %..., %allocOrView[...]
linalg.copy(%subView, %out)
```
Differential Revision: https://reviews.llvm.org/D80728
This utility factors out the machinery required to add iterArgs and yield values to an scf.ForOp.
Differential Revision: https://reviews.llvm.org/D80656
Buffer placement can now operates on functions that return buffers. These
buffers escape from the deallocation phase of buffer placement.
Differential Revision: https://reviews.llvm.org/D80696
operands of Generic ops.
Unit-extent dimensions are typically used for achieving broadcasting
behavior. The pattern added (along with canonicalization patterns
added previously) removes the use of unit-extent dimensions, and
instead uses a more canonical representation of the computation. This
new pattern is not added as a canonicalization for now since it
entails adding additional reshape operations. A pass is added to
exercise these patterns, along with an API entry to populate a
patterns list with these patterns.
Differential Revision: https://reviews.llvm.org/D79766
This allows constructing operand adaptor from existing op (useful for commonalizing verification as I want to do in a follow up).
I also add ability to use member initializers for the generated adaptor constructors for convenience.
Differential Revision: https://reviews.llvm.org/D80667
The operation `num_elements` determines the number of elements for a given
shape.
That is the product of its dimensions.
Differential Revision: https://reviews.llvm.org/D80281
Add the two conversion operations `index_to_size` and `size_to_index` to the
shape dialect.
This facilitates the conversion of index types between the shape and the
standard dialect.
Differential Revision: https://reviews.llvm.org/D80280
Purely cosmetic change.
The operation implementations in `Shape.cpp` are now lexicographic order.
Differential Revision: https://reviews.llvm.org/D80277
Summary:
Index is the proper type for storing shapes when constant folding, so
this fixes the previous code (which was using i64).
Differential Revision: https://reviews.llvm.org/D80600
This allocation of a workgroup memory is lowered to a
spv.globalVariable. Only static size allocation with element type
being int or float is handled. The lowering does account for the
element type that are not supported in the lowered spv.module based on
the extensions/capabilities and adjusts the number of elements to get
the same byte length.
Differential Revision: https://reviews.llvm.org/D80411
Summary:
This includes a basic implementation for the OpenMP parallel
operation without a custom pretty-printer and parser.
The if, num_threads, private, shared, first_private, last_private,
proc_bind and default clauses are included in this implementation.
Currently the reduction clause is omitted as it is more complex and
requires analysis to see if we can share implementation with the loop
dialect. The allocate clause is also omitted.
A discussion about the design of this operation can be found here:
https://llvm.discourse.group/t/openmp-parallel-operation-design-issues/686
The current OpenMP Specification can be found here:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
Reviewers: jdoerfert
Subscribers: mgorny, yaxunl, kristof.beyls, guansong, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79410
Take advantage of equality constrains to generate the type inference interface.
This is used for equality and trivially built types. The type inference method
is only generated when no type inference trait is specified already.
This reorders verification that changes some test error messages.
Differential Revision: https://reviews.llvm.org/D80484
Now that OpBuilder is available in `build` functions, it becomes possible to
populate the "then" and "else" regions directly when building the "if"
operation. This is desirable in more structured forms of builders, especially
in when conditionals are mixed with loops. Provide new `build` APIs taking
callbacks for body constructors, similarly to scf::ForOp, and replace more
clunky edsc::BlockBuilder uses with these. The original APIs remain available
and go through the new implementation.
Differential Revision: https://reviews.llvm.org/D80527
alloc/dealloc/copies.
Add options to LinalgPromotion to use callbacks for implementating the
allocation, deallocation of buffers used for the promoted subviews,
and to copy data into and from the original subviews to the allocated
buffers.
Also some misc. cleanup of the code.
Differential Revision: https://reviews.llvm.org/D80365
Modifying the loop nest builder for generating scf.parallel loops to
not generate scf.parallel loops for non-parallel iterator types in
Linalg operations. The existing implementation incorrectly generated
scf.parallel for all tiled loops. It is rectified by refactoring logic
used while lowering to loops that accounted for this.
Differential Revision: https://reviews.llvm.org/D80188
Summary:
This op extracts an extent from a shape.
This also is the first op which constant folds to shape.const_size,
which revealed that shape.const_size needs a folder (ConstantLike ops
seem to always need folders for the constant folding infra to work).
Differential Revision: https://reviews.llvm.org/D80394
This revision expands the types of vector contractions that can be lowered to vector.outerproduct.
All 8 permutation cases are support.
The idiomatic manipulation of AffineMap written declaratively makes this straightforward.
In the process a bug with the vector.contract verifier was uncovered.
The vector shape verification part of the contract op is rewritten to use AffineMap composition.
One bug in the vector `ops.mlir` test is fixed and a new case not yet captured is added
to the vector`invalid.mlir` test.
Differential Revision: https://reviews.llvm.org/D80393
This revision adds the additional lowering and exposes the patterns at a finer granularity for better programmatic reuse. The unit test makes use of the finer grained pattern for simpler checks.
As the ContractionOpLowering is exposed programmatically, cleanup opportunities appear and static class methods are turned into free functions with static visibility.
Differential Revision: https://reviews.llvm.org/D80375
Enable inset/extract/construct composite ops as well as access chain for
cooperative matrix. ConstantComposite requires more change and will be done in
a separate patch. Also fix the getNumElements function for coopMatrix per
feedback from Jeff Bolz. The number of element is implementation dependent so
it cannot be known at compile time.
Differential Revision: https://reviews.llvm.org/D80321
Adds support for cooperative matrix support for arithmetic and cast
instructions. It also adds cooperative matrix store, muladd and matrixlength
instructions which are part of the extension.
Differential Revision: https://reviews.llvm.org/D80181
The subview semantics changes recently to allow for more natural
representation of constant offsets and strides. The legalization of
subview op for lowering to SPIR-V needs to account for this.
Also change the linearization to use the strides from the affine map
of a memref.
Differential Revision: https://reviews.llvm.org/D80270
Summary:
Previously, the only support partial lowering from vector transfers to SCF was
going through loops. This requires a dedicated allocation and extra memory
roundtrips because LLVM aggregates cannot be indexed dynamically (for more
details see the [deep-dive](https://mlir.llvm.org/docs/Dialects/Vector/#deeperdive)).
This revision allows specifying full unrolling which removes this additional roundtrip.
This should be used carefully though because full unrolling will spill, negating the
benefits of removing the interim alloc in the first place.
Proper heuristics are left for a later time.
Differential Revision: https://reviews.llvm.org/D80100
Summary:
This revision refactors the Linalg tiling pass to be written as pattern applications and retires the use of the folder in Linalg tiling.
In the early days, tiling was written as a pass that would create (partially) folded and canonicalized operations on the fly for better composability.
As this evolves towards composition of patterns, the pass-specific folder is counter-productive and is retired.
The tiling options struct evolves to take a tile size creation function which allows materializing tile sizes on the fly (in particular constant tile sizes). This plays better with folding and DCE.
With the folder going away in Tiling, the check on whether subviews are the same in linalg fusion needs to be more robust. This revision also implements such a check.
In the current form, there are still some canonicalizations missing due to AffineMin/Max ops fed by scf::ForOp. These will be improved at a later time.
Differential Revision: https://reviews.llvm.org/D80267
Summary:
Additionally, this adds traits and builder methods to AssumingYieldOp
and names the input witness to the AssumingOp.
Differential Revision: https://reviews.llvm.org/D80187
Add a new type to SPIRV dialect for cooperative matrix and add new op for
cooperative matrix load. This is missing most instructions to support
cooperative matrix extension but this is a stop-gap patch to avoid creating big
review.
Differential Revision: https://reviews.llvm.org/D80043
This patch introduces interfaces for read and write ops with affine
restrictions. I used `read`/`write` intead of `load`/`store` for the
interfaces so that they can also be implemented by dma ops.
For now, they are only implemented by affine.load, affine.store,
affine.vector_load and affine.vector_store.
For testing purposes, this patch also migrates affine loop fusion and
required analysis to use the new interfaces. No other changes are made
beyond that.
Co-authored-by: Alex Zinenko <zinenko@google.com>
Reviewed By: bondhugula, ftynse
Differential Revision: https://reviews.llvm.org/D79829
Summary:
This is a basic op needed for creating shapes from SSA values
representing the extents.
Differential Revision: https://reviews.llvm.org/D79833
Making these two converters more generic. FunctionAndBlockSignatureConverter now
moves only memref results (after type conversion) to the function argument and
keeps other legal function results unchanged. NonVoidToVoidReturnOpConverter is
renamed to NoBufferOperandsReturnOpConverter. It removes only the buffer
operands from the operands of the converted ReturnOp and inserts CopyOps to copy
each buffer to the target function argument.
Differential Revision: https://reviews.llvm.org/D79329
Thanks to a recent change that made `::build` functions take an instance of
`OpBuilder`, it is now possible to build operations within a region attached to
the operation about to be created. Exercise this on `scf::ForOp` by taking a
callback that populates the loop body while the loop is being created.
Additionally, provide helper functions to build perfect nests of `ForOp`s,
with support for iteration arguments. These functions provide the same
functionality as EDSC LoopNestBuilder with simpler implementation, without
relying on edsc::ScopedContext, and using `OpBuilder` in an unambiguous way.
Compatibility functions for EDSC are provided, but may be removed in the
future.
Differential Revision: https://reviews.llvm.org/D79688
For now the promoted buffer is indexed using the `full view`. The full view might be
slightly bigger than the partial view (which is accounting for boundaries).
Unfortunately this does not compose easily with other transformations when multiple buffers
with shapes related to each other are involved.
Take `linalg.matmul A B C` (with A of size MxK, B of size KxN and C of size MxN) and suppose we are:
- Tiling over M by 100
- Promoting A only
This is producing a `linalg.matmul promoted_A B subview_C` where `promoted_A` is a promoted buffer
of `A` of size (100xK) and `subview_C` is a subview of size mxK where m could be smaller than 100 due
to boundaries thus leading to a possible incorrect behavior.
We propose to:
- Add a new parameter to the tiling promotion allowing to enable the use of the full tile buffer.
- By default all promoted buffers will be indexed by the partial view.
Note that this could be considered as a breaking change in comparison to the way the tiling promotion
was working.
Differential Revision: https://reviews.llvm.org/D79927
Summary:
Vector transfer ops semantic is extended to allow specifying a per-dimension `masked`
attribute. When the attribute is false on a particular dimension, lowering to LLVM emits
unmasked load and store operations.
Differential Revision: https://reviews.llvm.org/D80098
Summary:
This revision makes the use of vector transfer operatons more idiomatic by
allowing to omit and inferring the permutation_map.
Differential Revision: https://reviews.llvm.org/D80092
Generally:
1) don't use target_link_libraries() and add_mlir_library() on the same target, use LINK_LIBS PUBLIC instead.
2) don't use LINK_LIBS to specify LLVM libraries. Use LINK_COMPONENTS instead
3) no need to link against LLVMSupport. We pull it in by default.
Differential Revision: https://reviews.llvm.org/D80076
Summary:
First, compact implementation of lowering to LLVM IR. A bit more
challenging than the constant mask due to the dynamic indices, of course.
I like to hear if there are more efficient ways of doing this in LLVM,
but this for now at least gives us a functional reference implementation.
Reviewers: nicolasvasilache, ftynse, bkramer, reidtatge, andydavis1, mehdi_amini
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79954
DimOp folding is using bare accesses to underlying SubViewOp operands.
This is generally incorrect and is fixed in this revision.
Differential Revision: https://reviews.llvm.org/D80017
The following Conversions are affected: LoopToStandard -> SCFToStandard,
LoopsToGPU -> SCFToGPU, VectorToLoops -> VectorToSCF. Full file paths are
affected. Additionally, drop the 'Convert' prefix from filenames living under
lib/Conversion where applicable.
API names and CLI options for pass testing are also renamed when applicable. In
particular, LoopsToGPU contains several passes that apply to different kinds of
loops (`for` or `parallel`), for which the original names are preserved.
Differential Revision: https://reviews.llvm.org/D79940
This patch adds `affine.vector_load` and `affine.vector_store` ops to
the Affine dialect and lowers them to `vector.transfer_read` and
`vector.transfer_write`, respectively, in the Vector dialect.
Reviewed By: bondhugula, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D79658
Generally speaking, this is bad practice. It also causes the build to
break if there are editor temporary files.
Differential Revision: https://reviews.llvm.org/D79906
All ops of the SCF dialect now use the `scf.` prefix instead of `loop.`. This
is a part of dialect renaming.
Differential Revision: https://reviews.llvm.org/D79844
The existing implementation of SubViewOp::getRanges relies on all
offsets/sizes/strides to be dynamic values and does not work in
combination with canonicalization. This revision adds a
SubViewOp::getOrCreateRanges to create the missing constants in the
canonicalized case.
This allows reactivating the fused pass with staged pattern
applications.
However another issue surfaces that the SubViewOp verifier is now too
strict to allow folding. The existing folding pattern is turned into a
canonicalization pattern which rewrites memref_cast + subview into
subview + memref_cast.
The transform-patterns-matmul-to-vector can then be reactivated.
Differential Revision: https://reviews.llvm.org/D79759
This is only valid if the source tensors (result tensor) is static
shaped with all unit-extents when the reshape is collapsing
(expanding) dimensions.
Differential Revision: https://reviews.llvm.org/D79764
Summary:
Makes this operation runnable on CPU by generating MLIR instructions
that are eventually folded into an LLVM IR constant for the mask.
Reviewers: nicolasvasilache, ftynse, reidtatge, bkramer, andydavis1
Reviewed By: nicolasvasilache, ftynse, andydavis1
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79815
The main objective of this revision is to change the way static information is represented, propagated and canonicalized in the SubViewOp.
In the current implementation the issue is that canonicalization may strictly lose information because static offsets are combined in irrecoverable ways into the result type, in order to fit the strided memref representation.
The core semantics of the op do not change but the parser and printer do: the op always requires `rank` offsets, sizes and strides. These quantities can now be either SSA values or static integer attributes.
The result type is automatically deduced from the static information and more powerful canonicalizations (as powerful as the representation with sentinel `?` values allows). Previously static information was inferred on a best-effort basis from looking at the source and destination type.
Relevant tests are rewritten to use the idiomatic `offset: x, strides : [...]`-form. Bugs are corrected along the way that were not trivially visible in flattened strided memref form.
Lowering to LLVM is updated, simplified and now supports all cases.
A mixed static-dynamic mode test that wouldn't previously lower is added.
It is an open question, and a longer discussion, whether a better result type representation would be a nicer alternative. For now, the subview op carries the required semantic.
Differential Revision: https://reviews.llvm.org/D79662
Conversion/ folders were originally intended to store patterns for
DialectA->DialectB conversions that depend on both dialects and do not
conceptually belong to either of the dialects. As such, DialectA->DialectA
conversion does not make sense under Conversion/ and should rather live with
the dialect it operates on.
Differential Revision: https://reviews.llvm.org/D79569
This reverts commit 80d133b24f.
Per Stephan Herhut: The canonicalizer pattern that was added creates
forms of the subview op that cannot be lowered.
This is shown by failing Tensorflow XLA tests such as:
tensorflow/compiler/xla/service/mlir_gpu/tests:abs.hlo.test
Will provide more details offline, they rely on logs from private CI.
Summary:
The scalar zero + splat yields more intermediate code than the direct
dense zero constant, and ultimately is lowered to exactly the same
LLVM IR operations, so no point wasting the intermediate code.
Reviewers: nicolasvasilache, andydavis1, reidtatge
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79758
Summary:
The main objective of this revision is to change the way static information is represented, propagated and canonicalized in the SubViewOp.
In the current implementation the issue is that canonicalization may strictly lose information because static offsets are combined in irrecoverable ways into the result type, in order to fit the strided memref representation.
The core semantics of the op do not change but the parser and printer do: the op always requires `rank` offsets, sizes and strides. These quantities can now be either SSA values or static integer attributes.
The result type is automatically deduced from the static information and more powerful canonicalizations (as powerful as the representation with sentinel `?` values allows). Previously static information was inferred on a best-effort basis from looking at the source and destination type.
Relevant tests are rewritten to use the idiomatic `offset: x, strides : [...]`-form. Bugs are corrected along the way that were not trivially visible in flattened strided memref form.
It is an open question, and a longer discussion, whether a better result type representation would be a nicer alternative. For now, the subview op carries the required semantic.
Reviewers: ftynse, mravishankar, antiagainst, rriddle!, andydavis1, timshen, asaadaldien, stellaraccident
Reviewed By: mravishankar
Subscribers: aartbik, bondhugula, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, bader, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79662
Summary:
This revision introduces a helper function to allow applying rewrite patterns, interleaved with more global transformations, in a staged fashion:
1. the first stage consists of an OwningRewritePatternList. The RewritePattern in this list are applied once and in order.
2. the second stage consists of a single OwningRewritePattern that is applied greedily until convergence.
3. the third stage consists of applying a lambda, generally used for non-local transformation effects.
This allows creating custom fused transformations where patterns can be ordered and applied at a finer granularity than a sequence of traditional compiler passes.
A test that exercises these behaviors is added.
Differential Revision: https://reviews.llvm.org/D79518
Summary:
This makes a common pattern of
`dyn_cast_or_null<OpTy>(v.getDefiningOp())` more concise.
Differential Revision: https://reviews.llvm.org/D79681
This [discussion](https://llvm.discourse.group/t/viewop-isnt-expressive-enough/991/2) raised some concerns with ViewOp.
In particular, the handling of offsets is incorrect and does not match the op description.
Note that with an elemental type change, offsets cannot be part of the type in general because sizeof(srcType) != sizeof(dstType).
Howerver, offset is a poorly chosen term for this purpose and is renamed to byte_shift.
Additionally, for all intended purposes, trying to support non-identity layouts for this op does not bring expressive power but rather increases code complexity.
This revision simplifies the existing semantics and implementation.
This simplification effort is voluntarily restrictive and acts as a stepping stone towards supporting richer semantics: treat the non-common cases as YAGNI for now and reevaluate based on concrete use cases once a round of simplification occurred.
Differential revision: https://reviews.llvm.org/D79541
Summary: This revision introduces LinalgPromotionOptions to more easily control the application of promotion patterns. It also simplifies the different entry points into Promotion in preparation for some behavior change in subsequent revisions.
Differential Revision: https://reviews.llvm.org/D79489
This dialect contains various structured control flow operaitons, not only
loops, reflect this in the name. Drop the Ops suffix for consistency with other
dialects.
Note that this only moves the files and changes the C++ namespace from 'loop'
to 'scf'. The visible IR prefix remains the same and will be updated
separately. The conversions will also be updated separately.
Differential Revision: https://reviews.llvm.org/D79578
Summary:
Cast from a value interpreted as floating-point to the corresponding signed
integer value. Similar to an element-wise `static_cast` in C++, performs an
element-wise conversion operation.
Differential Revision: https://reviews.llvm.org/D79373
Functions checking whether an SSA value is a valid dimension or symbol for
affine operations can be called on values defined in a detached region (a
region that is not yet attached to an operation), for example, during parsing
or operation construction. These functions will attempt to uncondtionally
dereference a pointer to the parent operation of a region, which may be null
(as fixed by the previous commit, uninitialized before that). Since one cannot
know to which operation a region will be attached, conservatively this
operation would not be a valid affine scope and act accordingly, instead of
crashing.
This is a wrapper around vector of NamedAttributes that keeps track of whether sorted and does some minimal effort to remain sorted (doing more, e.g., appending attributes in sorted order, could be done in follow up). It contains whether sorted and if a DictionaryAttr is queried, it caches the returned DictionaryAttr along with whether sorted.
Change MutableDictionaryAttr to always return a non-null Attribute even when empty (reserve null cases for errors). To this end change the getter to take a context as input so that the empty DictionaryAttr could be queried. Also create one instance of the empty dictionary attribute that could be reused without needing to lock context etc.
Update infer type op interface to use DictionaryAttr and use NamedAttrList to avoid incurring multiple conversion costs.
Fix bug in sorting helper function.
Differential Revision: https://reviews.llvm.org/D79463
These template functions are used in the serializer, where we can
actually directly query the opcode from the op's definition and
use that in the auto-generated serialization logic.
This removes a set of templates accounting for 319 lines from
the auto-generated inc file.
Differential Revision: https://reviews.llvm.org/D79444
Originally, these operations were folded only if all expressions in their
affine maps could be folded to a constant expression that can be then subject
to numeric min/max computation. This introduces a more advanced version that
partially folds the affine map by lifting individual constant expression in it
even if some of the expressions remain variable. The folding can update the
operation in place to use a simpler map. Note that this is not as powerful as
canonicalization, in particular this does not remove dimensions or symbols that
became useless. This allows for better composition of Linalg tiling and
promotion transformation, where the latter can handle some canonical forms of
affine.min that the folding can now produce.
Differential Revision: https://reviews.llvm.org/D79502
Summary:
This revision adds a conservative canonicalization pattern for MemRefCastOp that are typically inserted during ViewOp and SubViewOp canonicalization.
Ideally such canonicalizations would propagate the type to consumers but this is not a local behavior. As a consequence MemRefCastOp are introduced to keep type compatibility but need to be cleaned up later, in the case where more dynamic behavior than necessary is introduced.
Differential Revision: https://reviews.llvm.org/D79438
DMA operation classes in the Standard dialect (`DmaStartOp` and `DmaWaitOp`)
provide helper functions that make numerous assumptions about the number and
order of operands, and about their types. However, these assumptions were not
checked in the verifier, leading to assertion failures or crashes when helper
functions were used on ill-formed ops. Some of the assuptions were checked in
the custom parser (and thus could not check assumption violations in ops
constructed programmatically, e.g., during rewrites) and others were not
checked at all. Introduce the verifiers for all these assumptions and drop
unnecessary checks in the parser that are now covered by the verifier.
Addresses PR45560.
Differential Revision: https://reviews.llvm.org/D79408
Adding this pattern reduces code duplication. There is no need to have a
custom implementation for lowering to llvm.cmpxchg.
Differential Revision: https://reviews.llvm.org/D78753