Summary:
This adds the knowledge of the DW_CFA_GNU_args_size instruction to the eh_frame parsing code.
Right now it is ignored as I am unsure how is it supposed to be handled, but now we are at least
able to parse the rest of the FDE containing this instruction.
I also add a fix for a bug which was exposed by this instruction. Namely, a mismatched sequence
of remember/restore instructions in the input could cause us to pop an empty stack and crash. Now
we just log the error and ignore the offending instruction.
Reviewers: jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D22266
llvm-svn: 275260
Bitfields were not correctly describing their offsets within the integer that they are contained within. If we had a bitfield like:
struct MyStruct {
uint32_t a:8;
uint32_t b:8;
};
ClangASTContext::GetChildCompilerTypeAtIndex would say that child a and b had the following values in their respective ValueObjectChild objects:
name byte-size bit-size bit-offset byte-offset-from-parent
==== ========= ======== ========== =======================
"a" 4 8 0 0
"b" 4 8 0 1
So if we had a "MyStruct" at address 0x1000, we would end up reading 4 bytes from 0x1000 for "a", and 4 bytes from 0x1001 for "b". The fix for this is to fix the "child_byte_offset" and "child_bitfield_bit_offset" values returned by ClangASTContext::GetChildCompilerTypeAtIndex() so that now the table looks like:
name byte-size bit-size bit-offset byte-offset-from-parent
==== ========= ======== ========== =======================
"a" 4 8 0 0
"b" 4 8 8 0
Then we don't run into a problem when reading data from a file's section info using "target variable" before running. It will also stop us from not being able to display a bitfield values if the bitfield is in the last bit of memory before an unmapped region. (Like if address 0x1004 was unmapped and unreadable in the example above, if we tried to read 4 bytes from 0x1001, the memory read would fail and we wouldn't be able to display "b").
<rdar://problem/27208225>
llvm-svn: 274701
may be in a function that is non-ABI conformant, and the eh_frame
instructions correctly describe how to unwind out of this function,
but the assembly parsing / arch default unwind plans would be
incorrect.
This is to address a problem that Ravitheja Addepally reported in
http://reviews.llvm.org/D21221 - I wanted to try handling the problem
with this approach which I think may be more generally helpful,
Ravitheja tested it and said it solves the problem on Linux/FreeBSD.
Ravi has a test case in http://reviews.llvm.org/D21221 that will
be committed separately.
Thanks for all the help on this one, Ravi.
llvm-svn: 274700
I changed "m_is_optimized" in lldb_private::CompileUnit over to be a lldb::LazyBool so that it can be set to eLazyBoolCalculate if it needs to be parsed later. With SymbolFileDWARFDebugMap, we don't actually open the DWARF in the .o files for each compile unit until later, and we can't tell if a compile unit is optimized ahead of time. So to avoid pulling in all .o right away just so we can answer the questions of "is this compile unit optimized" we defer it until a point where we will have the compile unit parsed.
<rdar://problem/26068360>
llvm-svn: 274585
We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like:
DW_OP_const8u (x)
DW_OP_form_tls_address
or
DW_OP_const8u (x)
DW_OP_GNU_push_tls_address
The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed.
This fix passes the "x" along to the thread:
virtual lldb::addr_t
lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr);
Then this is passed along to the DynamicLoader::GetThreadLocalData():
virtual lldb::addr_t
lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr);
This allows each DynamicLoader plug-in do the right thing for the current OS.
The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes.
I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread.
I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable.
<rdar://problem/23308080>
llvm-svn: 274366
We were checking for integer types only before this. So I added the ability for CompilerType objects to check for integer and enum types.
Then I searched for places that were using the CompilerType::IsIntegerType(...) function. Many of these places also wanted to be checking for enumeration types as well, so I have fixed those places. These are in the ABI plug-ins where we are figuring out which arguments would go in where in regisers/stack when making a function call, or determining where the return value would live. The real fix for this is to use clang to compiler a CGFunctionInfo and then modify the code to be able to take the IR and a calling convention and have the backend answer the questions correctly for us so we don't need to create a really bad copy of the ABI in each plug-in, but that is beyond the scope of this bug fix.
Also added a test case to ensure this doesn't regress in the future.
llvm-svn: 273750
as an asynchronous unwind plan source.
Two small fixes to the compact unwind dumper tool for
armv7 encodings.
A change to DWARFCallFrameInfo to strip the 0th bit on
addresses in eh_frame sections when armv7. In the
clang generated examples I have, the 0th bit is set for
thumb functions and that's causing the unwinder to pick
the wrong function for eh_frame info.
llvm-svn: 271970
We have seen cases where we have been unable to find an argument type for a function, or we find one from another language, and then we try to create a function type by calling:
lldb_private::ClangASTContext::CreateFunctionType(clang::ASTContext*, lldb_private::CompilerType const&, lldb_private::CompilerType const*, unsigned int, bool, unsigned int)
This fix will ensure that all arguments to lldb_private::ClangASTContext::CreateFunctionType() are in order by checking:
- AST is valid
- if arguments are specified we have a valid argument array
- return type is valid
- return type is a clang type
- all argument types are valid
- all argument types are clang types
If any of these fail, we return an invalid CompilerType. If we don't return an invalid type, clang will crash anyway, and LLDB must not crash even in the presence of bad or missing debug info.
<rdar://problem/25172715>
llvm-svn: 270932
ClangASTContext::StartTagDeclarationDefinition(...) was starting definitions for any TagType instances that have TagDecl, but ClangASTContext::CompleteTagDeclarationDefinition(...) was getting the type to a CXXRecordDecl with:
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
The problem is that getAsCXXRecordDecl() might dig a bit deeper into a type and dig out a different decl, which means we might call ClangASTContext::StartTagDeclarationDefinition(...), but it might not do anything, and then we might call ClangASTContext::CompleteTagDeclarationDefinition(...) and it might try to complete something that didn't have its definition started and this will crash.
This change fixes that, and also makes sure that starting a definition succeeds before any calls to ClangASTContext::CompleteTagDeclarationDefinition().
<rdar://problem/24091798>
llvm-svn: 270891
systems (ios, tvos, watchos). It's a simple format to use now that
I have i386/x86_64 supported already.
The unwind instructions are only valid at call sites -- that is,
when lldb is unwinding a frame in the middle of the stack. It
cannot be used for the currently executing frame; it has no information
about prologues/epilogues/etc.
<rdar://problem/12062336>
llvm-svn: 270658
m_decl_objects is problematic because it assumes that each VarDecl has a unique
variable associated with it. This is not the case in inline contexts.
Also the information in this map can be reconstructed very easily without
maintaining the map. The rest of the testsuite passes with this cange, and I've
added a testcase covering the inline contexts affected by this.
<rdar://problem/26278502>
llvm-svn: 270474
This is a pretty straightforward first pass over removing a number of uses of
Mutex in favor of std::mutex or std::recursive_mutex. The problem is that there
are interfaces which take Mutex::Locker & to lock internal locks. This patch
cleans up most of the easy cases. The only non-trivial change is in
CommandObjectTarget.cpp where a Mutex::Locker was split into two.
llvm-svn: 269877
Summary:
The "file" variable in a LineEntry was mapped using target.source-map, except when stepping through inlined code. This patch adds a new variable to LineEntry, "original_file", that contains the original file from the debug info. "file" will continue to (possibly) be mapped.
Some code has been changed to use "original_file". This is code dealing with symbols. Code dealing with source files will still use "file". Reviewers, please confirm that these particular changes are correct.
Tests run on Ubuntu 12.04 show no regression.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20135
llvm-svn: 269250
should not be used for this module -- for use when an ObjectFile
knows that it does not have meaningful or accurate function start
addresses.
More commonly, it is not clear that function start addresses are
missing in a module. There are certain cases on Mac OS X where we
can tell that a Mach-O binary has been stripped of this essential
information, and the unwinder can end up emulating many megabytes
of instructions for a single "function" in the binary.
When a Mach-O binary is missing both an LC_FUNCTION_STARTS load
command (very unusual) and an eh_frame section, then we will assume
it has also been stripped of symbols and that instruction emulation
will not be useful on this module.
<rdar://problem/25988067>
llvm-svn: 268475
the field_begin that starts the copy or it won't do anything.
This causes failures, but only in complex apps, I haven't found
a reduced test case for this yet.
<rdar://problem/21951798>
llvm-svn: 268467
Also added a data formatter that presents them as structs if you use frame
variable to look at their contents. Now the blocks testcase works.
<rdar://problem/15984431>
llvm-svn: 268307
to use the default clang C/C++ expression parser when debugging
Rust programs. Ideally there would be a rust language plugin to
support their language natively, but until then this will get simple
variable display to work.
http://reviews.llvm.org/D19545
llvm-svn: 267667
Recommit modified version of r266311 including build bot regression fix.
This differs from the original r266311 by:
- Fixing Scalar::Promote to correctly zero- or sign-extend value depending
on signedness of the *source* type, not the target type.
- Omitting a few stand-alone fixes that were already committed separately.
llvm-svn: 266422
This implements a PDBASTParser and corresponding logic in
SymbolFilePDB to do type lookup by name. This is just a first
pass and leaves many aspects of type lookup unimplemented, and
just focuses on laying the framework. With this patch, you should
be able to lookup basic types by name from a PDB.
Full class definitions are not completed yet, we will instead
just return a forward declaration of the class.
Differential Revision: http://reviews.llvm.org/D18848
Reviewed by: Greg Clayton
llvm-svn: 266392
This patch fixes a bunch of issues that show up on big-endian systems:
- The gnu_libstdcpp.py script doesn't follow the way libstdc++ encodes
bit vectors: it should identify the enclosing *word* and then access
the appropriate bit within that word. Instead, the script simply
operates on bytes. This gives the same result on little-endian
systems, but not on big-endian.
- lldb_private::formatters::WCharSummaryProvider always assumes wchar_t
is UTF16, even though it could also be UTF8 or UTF32. This is mostly
not an issue on little-endian systems, but immediately fails on BE.
Fixed by checking the size of wchar_t like WCharStringSummaryProvider
already does.
- ClangASTContext::GetChildCompilerTypeAtIndex uses uint32_t to access
the virtual base offset stored in the vtable, even though the size
of this field matches the target pointer size according to the C++
ABI. Again, this is mostly not visible on LE, but fails on BE.
- Process::ReadStringFromMemory uses strncmp to search for a terminator
consisting of multiple zero bytes. This doesn't work since strncmp
will stop already at the first zero byte. Use memcmp instead.
Differential Revision: http://reviews.llvm.org/D18983
llvm-svn: 266313
The Scalar implementation and a few other places in LLDB directly
access the internal implementation of APInt values using the
getRawData method. Unfortunately, pretty much all of these places
do not handle big-endian systems correctly. While on little-endian
machines, the pointer returned by getRawData can simply be used as
a pointer to the integer value in its natural format, no matter
what size, this is not true on big-endian systems: getRawData
actually points to an array of type uint64_t, with the first element
of the array always containing the least-significant word of the
integer. This means that if the bitsize of that integer is smaller
than 64, we need to add an offset to the pointer returned by
getRawData in order to access the value in its natural type, and
if the bitsize is *larger* than 64, we actually have to swap the
constituent words before we can access the value in its natural type.
This patch fixes every incorrect use of getRawData in the code base.
For the most part, this is done by simply removing uses of getRawData
in the first place, and using other APInt member functions to operate
on the integer data.
This can be done in many member functions of Scalar itself, as well
as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter,
I've had to add a Scalar::MakeUnsigned routine to parallel the existing
Scalar::MakeSigned, e.g. in order to implement an unsigned divide.
The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong
were already unused and can be simply removed. I've also removed
the Scalar::GetRawBits64 function and its few users.
The one remaining user of getRawData in Scalar.cpp is GetBytes.
I've implemented all the cases described above to correctly
implement access to the underlying integer data on big-endian
systems. GetData now simply calls GetBytes instead of reimplementing
its contents.
Finally, two places in the clang interface code were also accessing
APInt.getRawData in order to actually construct a byte representation
of an integer. I've changed those to make use of a Scalar instead,
to avoid having to re-implement the logic there.
The patch also adds a couple of unit tests verifying correct operation
of the GetBytes routine as well as the conversion routines. Those tests
actually exposed more problems in the Scalar code: the SetValueFromData
routine didn't work correctly for 128- and 256-bit data types, and the
SChar routine should have an explicit "signed char" return type to work
correctly on platforms where char defaults to unsigned.
Differential Revision: http://reviews.llvm.org/D18981
llvm-svn: 266311
This fixes several test case failure on s390x caused by the fact that
on this platform, the default "char" type is unsigned.
- In ClangASTContext::GetBuiltinTypeForEncodingAndBitSize we should return
an explicit *signed* char type for encoding eEncodingSint and bit size 8,
instead of the default platform char type (which may be unsigned).
This fix matches existing code in ClangASTContext::GetIntTypeFromBitSize,
and fixes the TestClangASTContext.TestBuiltinTypeForEncodingAndBitSize
unit test case.
- The test/expression_command/char/TestExprsChar.py test case is known to
fail on platforms defaulting to unsigned char (pr23069), and just needs
to be xfailed on s390x like on arm.
- The test/functionalities/watchpoint/watchpoint_on_vectors/main.c test
case defines a vector of "char" and implicitly assumes to be signed.
Use an explicit "signed char" instead.
Differential Revision: http://reviews.llvm.org/D18979
llvm-svn: 266309
will not exceed the bounds of their Section. This is addressing a
problem where a file had a large space between two sections that
were not used by this module - the last symbol in the text section
had an enormous size because the distance between that and the first
symbol in the data section were used to compute the size.
http://reviews.llvm.org/D19004
<rdar://problem/25227945>
llvm-svn: 266165
TargetOptions is ambiguous due to a definition in LLVM and in clang. This was
exposed by SVN r265640. Update to fix the build against the newer revision.
llvm-svn: 265644
In doing so, two bugs were uncovered (and fixed). The first bug
is that ClangASTContext::RemoveFastQualifiers() was broken, and
was not removing fast qualifiers (or doing anything else for that
matter). The second bug is that UnifyAccessSpecifiers treated
AS_None asymmetrically, which is probably an edge case, but seems
like a bug nonetheless.
llvm-svn: 265200
This allows these functions to be re-used by a forthcoming
PDBASTParser. The functions in question are CanCompleteType,
CompleteType, and CanImport. Conceptually, these functions belong
on ClangASTImporter anyway, and previously they were just ping
ponging around through a few levels of indirection to end up there
as well, so this patch actually makes the code somewhat simpler.
A few methods were moved to a new file called ClangUtil, so that
they can be shared between ClangASTImporter and ClangASTContext
without creating a circular dependency between those two cpp
files.
Differential Revision: http://reviews.llvm.org/D18381
llvm-svn: 264685
The ASTImporter completes the full definiton for a TagDecl in several places,
including the type-deport logic. When this happens, we should also propagate
the bit that says that this is a complete definition. This makes (for example)
lambdas callable.
<rdar://problem/22864976>
llvm-svn: 264485
We want to do a better job presenting errors that occur when evaluating
expressions. Key to this effort is getting away from a model where all
errors are spat out onto a stream where the client has to take or leave
all of them.
To this end, this patch adds a new class, DiagnosticManager, which
contains errors produced by the compiler or by LLDB as an expression
is created. The DiagnosticManager can dump itself to a log as well as
to a string. Clients will (in the future) be able to filter out the
errors they're interested in by ID or present subsets of these errors
to the user.
This patch is not intended to change the *users* of errors - only to
thread DiagnosticManagers to all the places where streams are used. I
also attempt to standardize our use of errors a bit, removing trailing
newlines and making clients omit 'error:', 'warning:' etc. and instead
pass the Severity flag.
The patch is testsuite-neutral, with modifications to one part of the
MI tests because it relied on "error: error:" being erroneously
printed. This patch fixes the MI variable handling and the testcase.
<rdar://problem/22864976>
llvm-svn: 263859
This fixes a recently reported a bug(https://llvm.org/bugs/show_bug.cgi?id=26790) relating to the clang expression evaluator no longer being able to resolve calls to
functions with arguments to typedefed anonymous structs, unions, or enums after a cleanup to the expression parsing code in r260768
This fixes the issue by attaching the tagged name to the original clang::TagDecl object when generating the typedef in lldb::ClangAstContext::CreateTypeDef.
This also fixes the issue for anonymous typedefs for non-struct types (unions and enums) where we have a tag name.
Author: Luke Drummond <luke.drummond@codeplay.com>
Differential Revision: http://reviews.llvm.org/D18099
llvm-svn: 263544
The purpose of these plugins is to make LLDB capable of debugging java
code JIT-ed by the android runtime.
Differential revision: http://reviews.llvm.org/D17616
llvm-svn: 262015
Most address represented in lldb as section plus offset and handling of
absolute addresses is problematic in several location because of lack
of necessary information (e.g. Target) or because of performance issues.
This CL change the way ObjectFileELF handle the absolute symbols with
creating a pseudo section for each symbol. With this change all existing
code designed to work with addresses in the form of section plus offset
will work with absolute symbols as well.
Differential revision: http://reviews.llvm.org/D17450
llvm-svn: 261859
DWARF stores this information in the DW_AT_start_scope attribute. This
CL add support for this attribute and also changes the functions
displaying frame variables to only display the variables currently in
scope.
Differential revision: http://reviews.llvm.org/D17449
llvm-svn: 261858
* Generate artificial symbol names from eh_fame during symbol parsing
so these symbols are already present when we calcualte the size of
the symbols where 0 is specified.
* Fix symbol size calculation for the last symbol in the file where
it have to last until the end of the parent section.
This is the re-commit of the original change after fixing some test
failures on OSX.
Differential revision: http://reviews.llvm.org/D16996
llvm-svn: 261205
the xcode project file to catch switch statements that have a
case that falls through unintentionally.
Define LLVM_FALLTHROUGH to indicate instances where a case has code
and intends to fall through. This should be in llvm/Support/Compiler.h;
Peter Collingbourne originally checked in there (r237766), then
reverted (r237941) because he didn't have time to mark up all the
'case' statements that were intended to fall through. I put together
a patch to get this back in llvm http://reviews.llvm.org/D17063 but
it hasn't been approved in the past week. I added a new
lldb-private-defines.h to hold the definition for now.
Every place in lldb where there is a comment that the fall-through
is intentional, I added LLVM_FALLTHROUGH to silence the warning.
I haven't tried to identify whether the fallthrough is a bug or
not in the other places.
I haven't tried to add this to the cmake option build flags.
This warning will only work for clang.
This build cleanly (with some new warnings) on macosx with clang
under xcodebuild, but if this causes problems for people on other
configurations, I'll back it out.
llvm-svn: 260930
Currently CountDeclLevels uses the ASTs which have no distinction between
separate translation units. If one .o file has a "using" declaration at
translation unit level, that "using" declaration will be in the same translation
unit as functions from other .o files in the same module. This leads to
erroneous name conflicts as the CountDeclLevels-based function filtering logic
accepts too many fucntions.
In the future we will identify the translation units for top-level Decls more
reliably and restore that functionality. There's a TODO to that effect in the
code.
llvm-svn: 260747
clearing the map ended up calling back into the TypeSystemMap to do lookups.
Not a good idea, and in this case it would cause a deadlock.
You would only see this when replacing the target contents after an exec, and only if you
had stopped before the exec, evaluated an expression, then continued
on to the point where you did the exec.
Fixed this by making sure the TypeSystemMap::Clear tears down the TypeSystems in the map before clearing the map.
I also add an expression before exec to the TestExec.py so that we'll catch this
issue if it crops up again in the future.
<rdar://problem/24554920>
llvm-svn: 260624
We already do this for Objective-C interfaces, but we never handled protocols
because the DWARF didn't represent them. Nowadays, though, we can import them
from modules, and we have to mark them properly.
<rdar://problem/24193009>
llvm-svn: 260445
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files
Each time a SymbolFile::FindTypes() is called, it needs to check the searched_symbol_files list to make sure it hasn't already been asked to find the type and return immediately if it has been checked. This will stop circular dependencies from also crashing LLDB during type queries.
This has proven to be an issue when debugging large applications on MacOSX that use DWARF in .o files.
<rdar://problem/24581488>
llvm-svn: 260434
* Generate artificial symbol names from eh_fame during symbol parsing
so these symbols are already present when we calcualte the size of
the symbols where 0 is specified.
* Fix symbol size calculation for the last symbol in the file where
it have to last until the end of the parent section.
Differential revision: http://reviews.llvm.org/D16996
llvm-svn: 260369
The IT instruction can specify condition code for up to 4 consecutive
instruction and it is used quite often by clang in epilogues causing
an issue when trying to unwind from locations covered by the IT
instruction and for locatins inmediately after the IT instruction.
Changes made to fix it:
* Introduce the concept of conditional instruction block what is a list
of consecutive instructions with the same condition. We update the
unwind information during the conditional instruction block and when
we reach the end of it (first instruction with a differemt condition)
then we restore the unwind information we had before the condition.
* Fix a bug in the ARM instruction emulator where neither PC nor the
ITSTATE was advanced when we reached an instruction what we can't
decode.
After the change we have no regression on android-arm running the
regular test suit and TestStandardUnwind also passes when running it
with clang as the compiler (previously it failed on an IT instruction).
Differential revision: http://reviews.llvm.org/D16814
llvm-svn: 260368
Summary:
This reverts commit 8af14b5f9af68c31ac80945e5b5d56f0a14b38e4.
Reverting as it breaks a few tests on Mac.
Reviewers: spyffe
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D16895
llvm-svn: 259823
Summary:
While evaluating expressions when stopped in a class method, there was a
problem of member variables hiding local variables. This was happening
because, in the context of a method, clang already knew about member
variables with their name and assumed that they were the only variables
with those names in scope. Consequently, clang never checks with LLDB
about the possibility of local variables with the same name and goes
wrong. This change addresses the problem by using an artificial
namespace "$__lldb_local_vars". All local variables in scope are
declared in the "$__lldb_expr" method as follows:
using $__lldb_local_vars::<local var 1>;
using $__lldb_local_vars::<local var 2>;
...
This hides the member variables with the same name and forces clang to
enquire about the variables which it thinks are declared in
$__lldb_local_vars. When LLDB notices that clang is enquiring about
variables in $__lldb_local_vars, it looks up local vars and conveys
their information if found. This way, member variables do not hide local
variables, leading to correct evaluation of expressions.
A point to keep in mind is that the above solution does not solve the
problem for one specific case:
namespace N
{
int a;
}
class A
{
public:
void Method();
int a;
};
void
A::Method()
{
using N::a;
...
// Since the above solution only touches locals, it does not
// force clang to enquire about "a" coming from namespace N.
}
Reviewers: clayborg, spyffe
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D16746
llvm-svn: 259810
A DWARF language vender extension for RenderScript was added to LLVM in r259348(http://reviews.llvm.org/D16409)
We should use this generated enum instead of the hardcoded value.
RenderScript is also based on C99 with some extensions, so we want to use ClangASTContext when RS is detected.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D16766
llvm-svn: 259634
track a source for. When we are pushing breakpoints and stepping past function prologues,
also push past code from line 0 immediately following the prologue end.
<rdar://problem/23730696>
llvm-svn: 259611
This fixes the regression of several tests on Windows after rL258621.
The root problem is that ObjectFilePECOFF was not setting type information for the symbols, and the new CL rejects symbols without type information, breaking functionality like thread step-over.
The fix sets the type information for functions (and creates a TODO for other types).
Along the way, I fixed some typos and formatting that made the code I was debugging harder to understand.
In the long run, we should consider replacing most of ObjectFilePECOFF with the COFF parsing code from LLVM.
Differential Revision: http://reviews.llvm.org/D16563
llvm-svn: 258758
The ELF symbol table always contain the size of the symbols so we
don't have to try to guess them based on the address of the next
symbol (it is needed for mach-o).
The change fixes an issue when a symbol is removed after a 0 size
symbol (e.g. because the second one is not public) what previously
caused the symbol lookup algorithm to end up with showing the 0 size
symbol even for the later addresses (what are not part of any symbol).
That symbol lookup error can confuse the user and also confuses the
current stack unwinder.
Re-commit this CL after fixing the issue with gcc-4.9.2 on i386 Linux.
Differential revision: http://reviews.llvm.org/D16186
llvm-svn: 258113
The ELF symbol table always contain the size of the symbols so we
don't have to try to guess them based on the address of the next
symbol (it is needed for mach-o).
The change fixes an issue when a symbol is removed after a 0 size
symbol (e.g. because the second one is not public) what previously
caused the symbol lookup algorithm to end up with showing the 0 size
symbol even for the later addresses (what are not part of any symbol).
That symbol lookup error can confuse the user and also confuses the
current stack unwinder.
Differential revision: http://reviews.llvm.org/D16186
llvm-svn: 258040
Both llvm and clang have an ArrayType class, which can cause resolution to fail when llvm headers that are implicitly included name this type.
source/Symbol/ClangASTContext.cpp has 'using namespace llvm;' and 'using namespace clang;'
Author: Luke Drummond <luke.drummond@codeplay.com>
Differential Revision: http://reviews.llvm.org/D16155
llvm-svn: 257759
Summary:
Clang recently added support for an OpenCL pipe type. Adding the new type to relevant switches to
avoid warnings.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D16055
llvm-svn: 257460
Summary:
If two dwarf sequences begin with entries that have identical addresses,
it is possible for the comparator to order the first entry of the new
sequence between the first and second entries of the existing sequence.
This will result in an attempted insertion of the second sequence inside
of the first sequence, which is invalid.
Ensure that insertions only occur in between existing sequences.
Reviewers: andrew.w.kaylor, clayborg
Subscribers: sas, lldb-commits
Differential Revision: http://reviews.llvm.org/D15979
Change by Francis Ricci <fjricci@fb.com>
llvm-svn: 257132
Summary:
This change is relevant for inferiors compiled with GCC. GCC does not
emit complete debug info for std::basic_string<...>, and consequently, Clang
(the LLDB compiler) does not generate correct mangled names for certain
functions.
This change removes the hard-coded alternate names in
ItaniumABILanguageRuntime.cpp.
Before the hard-coded names were put in ItaniumABILanguageRuntime.cpp, one could
not evaluate std::string methods (ex. std::string::length). After putting in
the hard-coded names, one could evaluate them. However, it did not still
enable one to call methods on, say for example, std::vector<string>.
This change makes that possible.
There is some amount of incompleteness in this change. Consider the
following example:
std::string hello("hello"), world("world");
std::map<std::string, std::string> m;
m[hello] = world;
One can still not evaluate the expression "m[hello]" in LLDB. Will
address this issue in another pass.
Reviewers: jingham, vharron, evgeny777, spyffe, dawn
Subscribers: clayborg, dawn, lldb-commits
Differential Revision: http://reviews.llvm.org/D12809
llvm-svn: 257113
This patch reworks the breakpoint filter-by-language patch to use the
symbol context instead of trying to guess the language solely from the
symbol's name. This has the advantage that symbols compiled with debug
info will have their actual language known. Symbols without debug info
will still do the same "guess"ing because Symbol::GetLanguage() is
implemented using Mangled::GuessLanguage(). The recognition of ObjC
names was merged into Mangled::GuessLanguage.
Reviewed by: jingham, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D15326
llvm-svn: 255808
Summary:
DWARF 5 proposes a reinvented .debug_macro section. This change follows
that spec.
Currently, only GCC produces the .debug_macro section and hence
the added test is annottated with expectedFailureClang.
Reviewers: spyffe, clayborg, tberghammer
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D15437
llvm-svn: 255729
find the largest address range (possibly combining multiple
LineEntry's for this line number) that is contiguous.
This allows lldb's fast-step stepping algorithm to potentially
run for a longer address range than if we have to stop at every
LineEntry indicating a subexpression in the source line.
http://reviews.llvm.org/D15407
<rdar://problem/23270882>
llvm-svn: 255590
When multiple functions are found by name, lldb removes duplicate entries of
functions with the same type, so the first function in the symbol context list
is chosen, even if it isn't in scope. This patch uses the declaration context
of the execution context to select the function which is in scope.
This fixes cases like the following:
int func();
namespace ns {
int func();
void here() {
// Run to BP here and eval 'p func()';
// lldb used to find ::func(), now finds ns::func().
}
}
Reviewed by: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D15312
llvm-svn: 255439
This also conveniently eliminates another warning from the unintentional
use of a trigraph:
warning: trigraph converted to '[' character [-Wtrigraphs]
default: printf("???(%u)", type);
^
llvm-svn: 255049
It was previously reverted due to issues that showed up only on linux. I was able to reproduce these issues and fix the underlying cause.
So this is the same patch as 254476 with the following two fixes:
- Fix not trying to complete classes that don't have external sources
- Fix ClangASTSource::CompleteType() to check the decl context of types that it finds by basename to ensure we don't complete a type "S" with a type like "std::S". Before this fix ClangASTSource::CompleteType() would accept _any_ type that had a matching basename and copy it into the other type.
<rdar://problem/22992457>
llvm-svn: 254980
This is done by finding the types that are forward declarations that come from a module, and loading that module's debug info in a separate lldb_private::Module, and copying the type over into the current module using a ClangASTImporter object. ClangASTImporter objects are already used to copy types from on clang::ASTContext to another for expressions so the type copying code has been around for a while.
A new FindTypes variant was added to SymbolVendor and SymbolFile:
size_t
SymbolVendor::FindTypes (const std::vector<CompilerContext> &context, bool append, TypeMap& types);
size_t
SymbolVendor::FindTypes (const std::vector<CompilerContext> &context, bool append, TypeMap& types);
The CompilerContext is a way to represent the exact context of a type and pass it through an agnostic API boundary so that we can find that exact context elsewhere in another file. This was required here because we can have a module that has submodules, both of which have a "foo" type.
I am not able to add tests for this yet as we currently don't build our C/C++/ObjC binaries with the clang binary that we build. There are some driver issues where it can't find the header files for the C and C++ standard library which makes compiling these tests hard. We can't also guarantee that if we are building with clang that it supporst the exact format of -gmodule debugging that we are trying to test. We have had other versions of clang that had a different implementation of -gmodule debugging that we are no longer supporting, so we can't enable tests if we are building with clang without compiling something and looking at the structure of the DWARF that was generated to ensure that it is the format we can actually use.
llvm-svn: 254476
It used to be a unique pointer, and there could be a case where ClangASTSource
held onto a copy of the pointer but Target::Destroy destroyed the unique pointer
in the mean time.
I also ensured that there is a validity check on the target (which confirms that
a ClangASTImporter can be generated) before the target's shared pointer is
copied into ClangASTSource.
This race condition caused a crash if Target::Destroy was called and then later
the target objecct was deleted.
llvm-svn: 252665
Fixed a crash that would happen if you tried to get the name of a constructor or destructor by calling "getDeclName()" instead of calling getName() (which would assert and crash).
Added the ability to get function arguments names from SBFunction.
llvm-svn: 252622
In this way, when a language needs to tell itself things that are not bound to a type but to a value (imagine a base-class relation, this is not about the type, but about the ValueObject), it can do so in a clean and general fashion
The interpretation of the values of the flags is, of course, up to the language that owns the value (the value object's runtime language, that is)
llvm-svn: 252503
For language that support such a thing, this API allows to ask whether a type is anonymous (i.e. has been given no name)
Comes with test case
llvm-svn: 252390
I am not adding a test case for this since I don't know how portable the __fp16 type is between compilers and I don't want to break the test suite.
<rdar://problem/22375079>
llvm-svn: 252012
The Go interpreter doesn't JIT or use LLVM, so this also
moves all the JIT related code from UserExpression to a new class LLVMUserExpression.
Differential Revision: http://reviews.llvm.org/D13073
Fix merge
llvm-svn: 251820
There were a number of const qualifiers being cast away which caused warnings.
This cluttered the output hiding real errors. Silence them by explicit casting.
NFC.
llvm-svn: 250662
This involved changing the TypeSystem::CreateInstance to take a module or a target. This allows type systems to create an AST for modules (no expression support needed) or targets (expression support is needed) and return the correct class instance for both cases.
llvm-svn: 249747
Summary:
In bug 24074, the type information is not shown
correctly. This commit includes the following -
-> Changes for displaying correct type based on
current lexical scope for the command "image
lookup -t"
-> The corresponding testcase.
-> This patch was reverted due to segfaults in
FreeBSD and Mac, I fixed the problems for both now.
Reviewers: emaste, granata.enrico, jingham, clayborg
Differential Revision: http://reviews.llvm.org/D13290
llvm-svn: 249673
* Use .ARM.exidx as a fallback unwind plan for non-call site when the
instruction emulation based unwind failed.
* Work around an old compiler issue where the compiler isn't sort the
entries in .ARM.exidx based on their address.
* Fix unwind info parsing when the virtual file address >= 0x80000000
* Fix bug in unwind info parsing when neither lr nor pc is explicitly
restored.
Differential revision: http://reviews.llvm.org/D13380
llvm-svn: 249119
This is meant to support languages that have a scripting mode with top-level code that acts as global
For now, this flag only controls whether 'frame variable' will attempt to treat globals as locals when within such a function
llvm-svn: 248960
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934
.ARM.exidx/.ARM.extab sections contain unwind information used on ARM
architecture from unwinding from an exception.
Differential revision: http://reviews.llvm.org/D13245
llvm-svn: 248903
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
And remove the switch default, so that the -Wcovered-switch-default
warning will catch new types next time they're added.
Differential Revision: http://reviews.llvm.org/D13096
llvm-svn: 248414
Summary:
In bug 24074, the type information is not shown
correctly. This commit includes the following -
-> Changes for displaying correct type based on
current lexical scope for the command "image
lookup -t"
-> The corresponding testcase.
Reviewers: jingham, ovyalov, spyffe, richard.mitton, clayborg
Differential Revision: http://reviews.llvm.org/D12404
llvm-svn: 248366
Different type system may have different notions of attributes of a type that do not matter for data formatters matching purposes
For instance, in the case of clang types, we remove some qualifiers (e.g. "volatile") as it doesn't make much sense to differentiate volatile T from T in the data formatters
This new API allows each type system to generate, if needed, a type that does not have those unwanted attributes that the data formatters can then consume to generate matches
llvm-svn: 248359
Summary:
This is no longer related to Clang and is just an opaque pointer
to data for a compiler type.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13039
llvm-svn: 248288
Summary:
With the recent changes to separate clang from the core structures
of LLDB, many inclusions of clang headers can be removed.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12954
llvm-svn: 248004
This cleans up type systems to be more pluggable. Prior to this we had issues:
- Module, SymbolFile, and many others has "ClangASTContext &GetClangASTContext()" functions. All have been switched over to use "TypeSystem *GetTypeSystemForLanguage()"
- Cleaned up any places that were using the GetClangASTContext() functions to use TypeSystem
- Cleaned up Module so that it no longer has dedicated type system member variables:
lldb::ClangASTContextUP m_ast; ///< The Clang AST context for this module.
lldb::GoASTContextUP m_go_ast; ///< The Go AST context for this module.
Now we have a type system map:
typedef std::map<lldb::LanguageType, lldb::TypeSystemSP> TypeSystemMap;
TypeSystemMap m_type_system_map; ///< A map of any type systems associated with this module
- Many places in code were using ClangASTContext static functions to place with CompilerType objects and add modifiers (const, volatile, restrict) and to make typedefs, L and R value references and more. These have been made into CompilerType functions that are abstract:
class CompilerType
{
...
//----------------------------------------------------------------------
// Return a new CompilerType that is a L value reference to this type if
// this type is valid and the type system supports L value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetLValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType that is a R value reference to this type if
// this type is valid and the type system supports R value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetRValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a const modifier to this type if
// this type is valid and the type system supports const modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddConstModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a volatile modifier to this type if
// this type is valid and the type system supports volatile modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddVolatileModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a restrict modifier to this type if
// this type is valid and the type system supports restrict modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddRestrictModifier () const;
//----------------------------------------------------------------------
// Create a typedef to this type using "name" as the name of the typedef
// this type is valid and the type system supports typedefs, else return
// an invalid type.
//----------------------------------------------------------------------
CompilerType
CreateTypedef (const char *name, const CompilerDeclContext &decl_ctx) const;
};
Other changes include:
- Removed "CompilerType TypeSystem::GetIntTypeFromBitSize(...)" and CompilerType TypeSystem::GetFloatTypeFromBitSize(...) and replaced it with "CompilerType TypeSystem::GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding encoding, size_t bit_size);"
- Fixed code in Type.h to not request the full type for a type for no good reason, just request the forward type and let the type expand as needed
llvm-svn: 247953
The Go runtime schedules user level threads (goroutines) across real threads.
This adds an OS plugin to create memory threads for goroutines.
It supports the 1.4 and 1.5 go runtime.
Differential Revision: http://reviews.llvm.org/D5871
llvm-svn: 247852
Summary: Supports the parsing of the "using namespace XXX" and "using XXX::XXX" directives. Added ambiguity errors when it two decls with the same name are encountered (see comments in TestCppNsImport). Fixes using directives being duplicated for anonymous namespaces. Fixes GetDeclForUID for specification DIEs.
Reviewers: sivachandra, chaoren, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12897
llvm-svn: 247836
GCC don't use the is_prologue_end flag to mark the first instruction
after the prologue. Instead of it it is issuing a line table entry for
the first instruction of the prologue and one for the first instruction
after the prologue. If the size of the prologue is 0 instruction then
the 2 line entry will have the same file address.
We remove these duplicates entries as they are violating the dwarf spec
and can cause confusion in the debugger. To prevent the lost of
information about the end of prologue we should set the prologue end
flag for the line entries what are representing more then 1 entry.
Differential revision: http://reviews.llvm.org/D12757
llvm-svn: 247788
Summary: SymbolFileDWARF now creates VarDecl and BlockDecl and adds them to the Decl tree. Then, in ClangExpressionDeclMap it uses the Decl tree to search for a variable. This fixes lots of variable scoping problems.
Reviewers: sivachandra, chaoren, spyffe, clayborg
Subscribers: tberghammer, jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D12658
llvm-svn: 247746
"gcc" register numbers are now correctly referred to as "ehframe"
register numbers. In almost all cases, ehframe and dwarf register
numbers are identical (the one exception is i386 darwin where ehframe
regnums were incorrect).
The old "gdb" register numbers, which I incorrectly thought were
stabs register numbers, are now referred to as "Process Plugin"
register numbers. This is the register numbering scheme that the
remote process controller stub (lldb-server, gdbserver, core file
support, kdp server, remote jtag devices, etc) uses to refer to the
registers. The process plugin register numbers may not be contiguous
- there are remote jtag devices that have gaps in their register
numbering schemes.
I removed all of the enums for "gdb" register numbers that we had
in lldb - these were meaningless - and I put LLDB_INVALID_REGNUM
in all of the register tables for the Process Plugin regnum slot.
This change is almost entirely mechnical; the one actual change in
here is to ProcessGDBRemote.cpp's ParseRegisters() which parses the
qXfer:features:read:target.xml response. As it parses register
definitions from the xml, it will assign sequential numbers as the
eRegisterKindLLDB numbers (the lldb register numberings must be
sequential, without any gaps) and if the xml file specifies register
numbers, those will be used as the eRegisterKindProcessPlugin
register numbers (and those may have gaps). A J-Link jtag device's
target.xml does contain a gap in register numbers, and it only
specifies the register numbers for the registers after that gap.
The device supports many different ARM boards and probably selects
different part of its register file as appropriate.
http://reviews.llvm.org/D12791
<rdar://problem/22623262>
llvm-svn: 247741
Before we had:
ClangFunction
ClangUtilityFunction
ClangUserExpression
and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression
base class, and three pure virtual implementations for the Expression kinds:
FunctionCaller
UtilityFunction
UserExpression
You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage.
The Target will then consult all the registered TypeSystem plugins, and if the type system that matches
the language can make an expression of that kind, it will do so and return it.
Because all of the real expression types need to communicate with their ExpressionParser in a uniform way,
I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper
that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types.
Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs.
The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller
to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a
FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions.
Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common
JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency
but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary.
llvm-svn: 247720
Summary:
This was int64_t, but all usages of it came from code that was passing
in unsigned values. The usages of the array size, except for one, were
also treating it as an unsigned value. The usage that treated it as
signed was to try to figure out if it was a complete type or not, but
the callers creating the array didn't seem to be aware of using -1 as
an indicator for an incomplete array.
Reviewers: ribrdb, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12872
llvm-svn: 247662
c:\buildbot\lldb-windows-x86\lldb-windows-x86\llvm\tools\lldb\source\symbol\goastcontext.cpp(906) : warning C4715: 'lldb_private::GoASTContext::GetBitSize' : not all control paths return a value
c:\buildbot\lldb-windows-x86\lldb-windows-x86\llvm\tools\lldb\source\symbol\goastcontext.cpp(1175) : error C4716: 'lldb_private::GoASTContext::ConvertStringToFloatValue' : must return a value
llvm-svn: 247647
* Create new dwo symbol file class
* Add handling for .dwo sections
* Change indexes in SymbolFileDWARF to store compile unit offset next to
DIE offset
* Propagate queries from dwarf compile unit to the dwo compile unit
where applicable
Differential revision: http://reviews.llvm.org/D12291
llvm-svn: 247132
This will keep our code cleaner and it removes the need for intrusive additions to TypeSystem like:
class TypeSystem
{
virtual ClangASTContext *
AsClangASTContext() = 0;
}
As you can now just use the llvm::dyn_cast and other casts.
llvm-svn: 247041
Summary:
This doesn't exist in other LLVM projects any longer and doesn't
do anything.
Reviewers: chaoren, labath
Subscribers: emaste, tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D12586
llvm-svn: 246749
class DWARFASTParser
{
public:
virtual ~DWARFASTParser() {}
virtual lldb::TypeSP
ParseTypeFromDWARF (const lldb_private::SymbolContext& sc,
const DWARFDIE &die,
lldb_private::Log *log,
bool *type_is_new_ptr) = 0;
virtual lldb_private::Function *
ParseFunctionFromDWARF (const lldb_private::SymbolContext& sc,
const DWARFDIE &die) = 0;
virtual bool
CompleteTypeFromDWARF (const DWARFDIE &die,
lldb_private::Type *type,
lldb_private::CompilerType &clang_type) = 0;
virtual lldb_private::CompilerDeclContext
GetDeclContextForUIDFromDWARF (const DWARFDIE &die) = 0;
virtual lldb_private::CompilerDeclContext
GetDeclContextContainingUIDFromDWARF (const DWARFDIE &die) = 0;
};
We have one subclass named DWARFASTParserClang that implements all of the clang specific AST type parsing. This keeps all DWARF parsing in the DWARF plug-in. Moved all of the DWARF parsing code that was in ClangASTContext over into DWARFASTParserClang.
lldb_private::TypeSystem classes no longer have any DWARF parsing functions in them, but they can hand out a DWARFASTParser:
virtual DWARFASTParser *
GetDWARFParser ()
{
return nullptr;
}
This keeps things clean and makes for easy merging when we have different AST's for different languages.
llvm-svn: 246242
Added a new class called DWARFDIE that contains a DWARFCompileUnit and DWARFDebugInfoEntry so that these items always stay together.
There were many places where we just handed out DWARFDebugInfoEntry pointers and then use them with a compile unit that may or may not be the correct one. Clients outside of DWARFCompileUnit and DWARFDebugInfoEntry should all be dealing with DWARFDIE instances instead of playing with DWARFCompileUnit/DWARFDebugInfoEntry pairs manually.
This paves to the way for some modifications that are coming for DWO.
llvm-svn: 246100
These are 2 new value currently in experimental status used when split
debug info is enabled.
Differential revision: http://reviews.llvm.org/D12238
llvm-svn: 245931
The array is indexed by the value in the DW_FORM filed what can be
bigger then the size of the array. This CL add bound checking to avoid
buffer overflows
Differential revision: http://reviews.llvm.org/D12239
llvm-svn: 245930
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.
Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.
Bulk renames for things that used to return a ClangASTType which is now CompilerType:
"Type::GetClangFullType()" to "Type::GetFullCompilerType()"
"Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
"Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
"Value::GetClangType()" to "Value::GetCompilerType()"
"Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
"ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
many more renames that are similar.
llvm-svn: 245905
for eh_frame and stabs register numberings. This is not
complete but it's a step in the right direction. It's almost
entirely mechanical.
lldb informally uses "gcc register numbering" to mean eh_frame.
Why? Probably because there's a notorious bug with gcc on i386
darwin where the register numbers in eh_frame were incorrect.
In all other cases, eh_frame register numbering is identical to
dwarf.
lldb informally uses "gdb register numbering" to mean stabs.
There are no official definitions of stabs register numbers
for different architectures, so the implementations of gdb
and gcc are the de facto reference source.
There were some incorrect uses of these register number types
in lldb already. I fixed the ones that I saw as I made
this change.
This commit changes all references to "gcc" and "gdb" register
numbers in lldb to "eh_frame" and "stabs" to make it clear
what is actually being represented.
lldb cannot parse the stabs debug format, and given that no
one is using stabs any more, it is unlikely that it ever will.
A more comprehensive cleanup would remove the stabs register
numbers altogether - it's unnecessary cruft / complication to
all of our register structures.
In ProcessGDBRemote, when we get register definitions from
the gdb-remote stub, we expect to see "gcc:" (qRegisterInfo)
or "gcc_regnum" (qXfer:features:read: packet to get xml payload).
This patch changes ProcessGDBRemote to also accept "ehframe:"
and "ehframe_regnum" from these remotes.
I did not change GDBRemoteCommunicationServerLLGS or debugserver
to send these new packets. I don't know what kind of interoperability
constraints we might be working under. At some point in the future
we should transition to using the more descriptive names.
Throughout lldb we're still using enum names like "gcc_r0" and "gdb_r0",
for eh_frame and stabs register numberings. These should be cleaned
up eventually too.
The sources link cleanly on macosx native with xcode build. I
don't think we'll see problems on other platforms but please let
me know if I broke anyone.
llvm-svn: 245141
Another step towards isolating all language/AST specific code into the files to further abstract specific implementations of parsing types for a given language.
llvm-svn: 245090
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
This is the work done by Ryan Brown from http://reviews.llvm.org/D8712 that makes a TypeSystem class and abstracts types to be able to use a type system.
All tests pass on MacOSX and passed on linux the last time this was submitted.
llvm-svn: 244679
debugging optimized code. Adds new methods on Function/SBFunction
to query whether a given function is optimized. Adds a new
function.is-optimized format entity and changes the default
frame-format to append "[opt]" if the function was built with
optimization.
The only indication that a binary was built with optimization
that we have right now is the presence of the DW_AT_APPLE_optimized
attribute (DW_FORM_flag value 1) in the DW_TAG_compile_unit.
The absence of this flag may mean that the compile_unit was not
compiled with optimization, or it may mean that the producer
does not generate this attribute.
Currently this only works for dSYM debugging. When we create
the CompileUnit with dwarf-in-.o-file debugging we don't have
the attribute value yet so it's not set. I need to find the
flag value when we do start to read the .o file DWARF and
set the CompileUnit's status at that point - but haven't
done it yet.
I'm also going to add a mechanism for issuing warnings to users
such that they're only issued once in a debug session and
there is away for users to suppress these warnings altogether
via .lldbinit file settings. But I want to get this changeset
committed now that it's at a useful state.
<rdar://problem/19281172>
llvm-svn: 243508
Summary:
This replaces (void)x; usages where they x was subsequently
involved in an assertion with this macro to make the
intent more clear.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11451
llvm-svn: 243074
Summary:
This enables us to avoid casts to "void *" in some cases and avoids a couple of "casts off const
qualifiers" warnings.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11388
llvm-svn: 242874
for a CXXRecordDecl gets pointed at that record. This can happen when a type is
imported out of and then into the target's AST context without being laid out.
Also added a testcase that covers this scenario.
<rdar://problem/21844453>
llvm-svn: 242687
The mentioned commit introduced a subtle change in behavior when printing variable names. This
occured when we have a variable, for which we only know the demangled name, because the compiler
has failed to provide one (this typically happens for variables in anonymous namespaces). A
Mangled class which contains only a demangled name considers itself to be invalid (this could
possibly be a bug), but it's GetName() method still returns a valid demangled name. The previous
commit introduced the check for the validity of the class, and if it failed, it would fall back
to printing the bare name (without the namespace prefixes, as the tests were expecting). I revert
this part of the commit and check the validity of the string returned by GetName() instead.
llvm-svn: 241795
pointed into the artificial function constructed for the expression. I now make
anything that pointed to the function as its DeclContext be global while the
copy occurs; afterward I restored the old DeclContext.
Added a testcase that make sure that this works properly and doesn't crash
anything.
<rdar://problem/21049838>
llvm-svn: 241695
This API is currently a no-op (in the sense that it has the same behavior as the already existing GetName()), but is meant long-term to provide a best-for-visualization version of the name of a function
It is still not hooked up to the command line 'bt' command, nor to the 'gui' mode, but I do have ideas on how to make that work going forward
rdar://21203242
llvm-svn: 241482
Previously we handled only a few opcode DWARF CFI opcode when we
were parsing the CIE. With this change we use mostly the same code
what we use for parsing the PDE which cover more opcode.
Differential revision: http://reviews.llvm.org/D10866
llvm-svn: 241332
The CFA offset shouldn't be irestored to the saved value in case
of a DW_CFA_restore_state opcode.
Differential revision: http://reviews.llvm.org/D10843
llvm-svn: 241331
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
* Add and fix the emulation of several instruction.
* Disable frame pointer usage on Android.
* Specify return address register for the unwind plan instead of explict
tracking the value of RA.
* Replace prologue detection heuristics (unreliable in several cases)
with a logic to follow the branch instructions and restore the CFI
value based on them. The target address for a branch should have the
same CFI as the source address (if they are in the same function).
* Handle symbols in ELF files where the symbol size is not specified
with calcualting their size based on the next symbol (already done
in MachO files).
* Fix architecture in FuncUnwinders with filling up the inforamtion
missing from the object file with the architecture of the target.
* Add code to read register wehn the value is set to "IsSame" as it
meanse the value of a register in the parent frame is the same as the
value in the current frame.
Differential revision: http://reviews.llvm.org/D10447
llvm-svn: 240533
The problem is for lldb_private::Type instances that have encoding types (pointer/reference/const/volatile/restrict/typedef to type with user ID 0x123). If they started out with m_flags.clang_type_resolve_state being set to eResolveStateUnresolved (0), then when we would call Type::ResolveClangType(eResolveStateForward) we would complete the full type due to logic errors in the code.
We now only complete the type if clang_type_resolve_state is eResolveStateLayout or eResolveStateFull and we correctly upgrade the type's current completion state to eResolveStateForward after we make a forward delcaration to the pointer/reference/const/volatile/restrict/typedef type instead of leaving it set to eResolveStateUnresolved.
llvm-svn: 239752
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
If binding to port 0 is selected, the actual port is printed.
This improves the reliability of platform startup by ensuring that
a free port can be found.
TEST PLAN
./lldb-server platform --listen *:0
Listening for a connection from <port-number>...
Will appear on stdout (with other stuff potentially)
llvm-svn: 238173
Removed some unused variables, added some consts, changed some casts
to const_cast. I don't think any of these changes are very
controversial.
Differential Revision: http://reviews.llvm.org/D9674
llvm-svn: 237218
The ClangASTContext::getTargetInfo() will return NULL in this case and could cause us to crash if we don't check.
<rdar://problem/20543554>
llvm-svn: 236681
Summary:
GetEHFrameAugmentedUnwindPlan duplicated the work of GetEHFrameUnwindPlan in getting the original
plan from DWARF CFI. This changes the function to call GetEHFrameUnwindPlan instead of doing all
the work itself. A copy constructor is added to UnwindPlan to enable plan copying.
Test Plan: No regressions on linux test suite.
Reviewers: jasonmolenda, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9369
llvm-svn: 236607
compact unwind encodings for x86_64 / i386 omit-frame-pointer
code. It was possible for lldb to get the location of saved
registers incorrect for some of these functions.
<rdar://problem/20753264>
llvm-svn: 236478
Summary: Just what it says on the box.
Reviewers: jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9150
llvm-svn: 235493
module-loading support for the expression parser.
- It adds support for auto-loading modules referred
to by a compile unit. These references are
currently in the form of empty translation units.
This functionality is gated by the setting
target.auto-import-clang-modules (boolean) = false
- It improves and corrects support for loading
macros from modules, currently by textually
pasting all #defines into the user's expression.
The improvements center around including only those
modules that are relevant to the current context -
hand-loaded modules and the modules that are imported
from the current compile unit.
- It adds an "opt-in" mechanism for all of this
functionality. Modules have to be explicitly
imported (via @import) or auto-loaded (by enabling
the above setting) to enable any of this
functionality.
It also adds support to the compile unit and symbol
file code to deal with empty translation units that
indicate module imports, and plumbs this through to
the CompileUnit interface.
Finally, it makes the following changes to the test
suite:
- It adds a testcase that verifies that modules are
automatically loaded when the appropriate setting
is enabled (lang/objc/modules-auto-import); and
- It modifies lanb/objc/modules-incomplete to test
the case where a module #undefs something that is
#defined in another module.
<rdar://problem/20299554>
llvm-svn: 235313
context as the first thing we do. This prevents
crashes if some of the initial setup produces
messages or errors.
<rdar://problem/20457882>
llvm-svn: 234511
Summary:
If a struct type S has a member T that has a member that is a function that
returns a typedef of S* the respective field would be duplicated, which caused
an assert down the line in RecordLayoutBuilder. This patch adds a check that
removes the possibility of trying to resolve the same type twice within the
same callstack.
This commit also adds unit tests for these failures.
Fixes https://llvm.org/bugs/show_bug.cgi?id=20486.
Patch by Cristian Hancila.
Test Plan: Run unit tests.
Reviewers: clayborg spyffe
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8561
llvm-svn: 234441
There were a couple of real bugs here regarding error checking and
signed/unsigned comparisons, but mostly these were just noise.
There was one class of bugs fixed here which is particularly
annoying, dealing with MSVC's non-standard behavior regarding
the underlying type of enums. See the comment in
lldb-enumerations.h for details. In short, from now on please use
FLAGS_ENUM and FLAGS_ANONYMOUS_ENUM when defining enums which
contain values larger than can fit into a signed integer.
llvm-svn: 233943
The underlying type of wchar_t is not defined by the standard. This CL
add logic to correctly use the type specified for the current target
based on TargetInfo.
llvm-svn: 233795
A char can have signed and unsigned encoding but previously lldb always
assumed it is signed. This CL adds a logic to detect the encoding of
'char' types based on the default encoding on the target architecture.
It fixes variable printing and expression evaluation on architectures
where 'char' is signed by default.
Differential revision: http://reviews.llvm.org/D8636
llvm-svn: 233682
Since ClangASTSource::layoutRecordType() was overriding a virtual
function in the base, this was inadvertently causing a new method
to be introduced rather than an override. To fix this all method
signatures are changed back to taking DenseMaps, and the `override`
keyword is added to make sure this type of error doesn't happen
again.
To keep the original fix intact, which is that fields and bases
must be added in offset order, the ImportOffsetMap() function
now copies the DenseMap into a vector and then sorts the vector
on the value type (e.g. the offset) before iterating over the
sorted vector and inserting the items.
llvm-svn: 233099
Summary:
This commit adds this alternate route only when parsing variable dies
corresponding to global or static variables. The motivation for this is that GCC
does not emit linkage names for functions and variables declared/defined in
anonymous namespaces. Having this alternate route fixes one part of
TestNamespace which fails when the test case is compiled with GCC.
An alternate route to get fully qualified names of functions whose linkage names
are missing will be added with a followup change. With that, the other failing
part of TestNamespace will also be fixed.
Test Plan: dotest.py -C gcc -p TestNamespace
Reviewers: clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8569
llvm-svn: 233098
Prior to this patch, we would try to synthesize class types by
iterating over a DenseMap of FieldDecls and adding each one to
a CXXRecordDecl. Since a DenseMap doesn't provide a deterministic
ordering of the elements, this would not add the fields in
FieldOffset order, but rather in some random order determined by
the memory layout of the DenseMap.
This patch fixes the issue by changing DenseMaps to vectors. The
ability to lookup a value in the DenseMap was hardly being used,
and where it is sufficient to do a vector lookup.
Differential Revision: http://reviews.llvm.org/D8512
llvm-svn: 233090
So that we don't have to update every single #include in the entire
codebase to #include this new header (which used to get included by
lldb-private-log.h, we automatically #include "Logging.h" from
within "Log.h".
llvm-svn: 232653
This removes Host::Backtrace from the codebase, and changes all
call sites to use llvm::sys::PrintStackTrace(). This makes the
functionality available for all platforms, and even for platforms
which currently had a supported implementation of Host::Backtrace,
this patch should enable richer information in stack traces, such
as file and line number information, as well as giving it the
ability to unwind through inlined functions.
llvm-svn: 231511
- use a hardcoded formatter to match all vector types, and make it so that their element type is taken into account when doing default formatting
- special case a vector of char to display byte values instead of characters by default
Fixes the test failures Ilia was seeing
llvm-svn: 231504
Summary:
Symbols in ELF files can be versioned, but LLDB currently does not understand these. This problem
becomes apparent once one loads glibc with debug info. Here (in the .symtab section) the versions
are embedded in the name (name@VERSION), which causes issues when evaluating expressions
referencing memcpy for example (current glibc contains memcpy@@GLIBC_2.14 and
memcpy@GLIBC_2.2.5).
This problem was not evident without debug symbols as the .dynsym section
stores the bare names and the actual versions are present in a separate section (.gnu.version_d),
which LLDB ignores. This resulted in two definitions of memcpy in the symbol table.
This patch adds support for storing annotated names to the Symbol class. If
Symbol.m_contains_linker_annotations is true then this symbol is annotated. Unannotated name can
be obtained by calling StripLinkerAnnotations on the corresponding ObjectFile. ObjectFileELF
implements this to strip @VERSION suffixes when requested. Symtab uses this function to add the
bare name as well as the annotated name to the name lookup table.
To preserve the size of the Symbol class, I had to steal one bit from the m_type field.
Test Plan:
This fixes TestExprHelpExamples.py when run with a glibc with debug symbols. Writing
an environment agnostic test case would require building a custom shared library with symbol
versions and testing symbol resolution against that, which is somewhat challenging.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8036
llvm-svn: 231228
Debugger.h is a huge file that gets included everywhere, and
FormatManager.h brings in a ton of unnecessary stuff and doesn't
even use anything from it in the header.
llvm-svn: 231161
When we have a debug map we have an executable with a bunch of STAB symbols and each source file has a N_SO symbol which scopes a bunch of symbols inside of it. We can use this to our advantage here when looking for the complete definition of an objective C class by looking for a symbol whose name matches the class name and whose type is eSymbolTypeObjCClass. If we find one, that symbol will be contained within a N_SO symbol. This symbol gets turned into a symbol whose type is eSymbolTypeSourceFile and that symbol will contain the eSymbolTypeObjCClass which helps us to locate the correct .o file and allows us to only look in that file.
To further accelerate things, if we are looking for the implementation, we can avoid looking at all .o files if we don't find a matching symbol because we have a debug map, which means the objective C symbol for the class can't have been stripped, so we can safely not search all remaining .o files. This will save us lots of time when trying to look for "NSObject" and any other AppKit and Foundation classes that we never have implementation definitions for.
<rdar://problem/19234225>
llvm-svn: 230562
Summary:
This patch enables evaluation of DWARF expressions setting the CFA during stack unwinding.
This makes TestSigtrampUnwind "almost" pass on linux. I am not enabling the test yet since the
symbol name for the signal trampoline does not get resolved properly due to a different bug, but
apart from that, the backtrace is sane.
I am unsure how this change affects Mac. I think it makes the unwinder prefer the DWARF unwind
plan instead of some custom platform-dependant plan. However, it does not affect the end result
- the stack unwinding works as expected.
Reviewers: jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7792
llvm-svn: 230211
Summary:
This change refactors UnwindPlan::Row to be able to store the fact that the CFA is value is set
by evaluating a dwarf expression (DW_CFA_def_cfa_expression). This is achieved by creating a new
class CFAValue and moving all CFA setting/getting code there. Note that code using the new
CFAValue::isDWARFExpression is not yet present and will be added in a follow-up patch. Therefore,
this patch should not change the functionality in any way.
Test Plan: Ran tests on Mac and Linux. No regressions detected.
Reviewers: jasonmolenda, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7755
llvm-svn: 230210
changing it was in r219544 - after living on that for a few
months, I wanted to take another crack at this.
The disassembly-format setting still exists and the old format
can be user specified with a setting like
${current-pc-arrow}${addr-file-or-load}{ <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>}:
This patch was discussed in http://reviews.llvm.org/D7578
<rdar://problem/19726421>
llvm-svn: 229186
There was a test in the test suite that was triggering the backtrace logging output that requested that the client pass an execution context. Sometimes we need the process for Objective C types because our static notion of the type might not align with the reality when being run in a live runtime.
Switched from an "ExecutionContext *" to an "ExecutionContextScope *" for greater ease of use.
llvm-svn: 228892
- you have a type that contains a typedef to a VectorType or an ExtVectorType
- that type is returned from an ARM function that LLDB steps over so we try to figure out the return type
- we try to determine if the type is a homogeneous aggregate type and we crash
We get not using getAs() when we should have been and using llvm::cast caused an assertion crash when the typedef type didn't return a valid VectorType or ExtVectorType.
<rdar://problem/19646550>
llvm-svn: 228771
The problem occurred when we had incorrect address ranges in the debug map that included the padding between functions causing the end address of a line table entry to fall into an inlinked (next function) address range.
<rdar://problem/19721144>
llvm-svn: 228707
This was causing code that opened multiple targets to try and get a path to debugserver from the GDB remote communication class, and it would get the LLDB path and some instances would return empty strings and it would cause debugserver to not be found.
<rdar://problem/18756927>
llvm-svn: 227935
And since enough of these are doing the right thing, add a test case to verify we are doing the right thing with freeze drying ObjC object types
Fixes rdar://18092770
llvm-svn: 227282
This is necessary because the byte size of an ObjC class type is not reliably statically knowable (e.g. because superclasses sit deep in frameworks that we have no debug info for)
The lack of reliable size info is a problem when trying to freeze-dry an ObjC instance (not the pointer, the pointee)
This commit lays the foundation for having language runtimes help in figuring out byte sizes, and having ClangASTType ask for runtime help
No feature change as no runtime actually implements the logic, and nowhere is an ExecutionContext passed in yet
llvm-svn: 227274
i386/x86_64 functions. The stack size was being multiplied by the
pointer size incorrectly. The register permutation placeholders
(UNWIND_X86_REG_NONE) were decrementing the stack offset of the
saved registers when it should not have been.
<rdar://problem/19570035>
llvm-svn: 226889
The refactor was motivated by some comments that Greg made
http://reviews.llvm.org/D6918
and also to break a dependency cascade that caused functions linking
in string->int conversion functions to pull in most of lldb
llvm-svn: 226199
This is done by adding a "Variable *" to SymbolContext and allowing SymbolFile::ResolveSymbolContext() so if an address is resolved into a symbol context, we can include the global or static variable for that address.
This means you can now find global variables that are merged globals when doing a "image lookup --verbose --address 0x1230000". Previously we would resolve a symbol and show "_MergedGlobals123 + 1234". But now we can show the global variable name.
The eSymbolContextEverything purposely does not include the new eSymbolContextVariable in its lookup since stack frame code does many lookups and we don't want it triggering the global variable lookups.
<rdar://problem/18945678>
llvm-svn: 226084
step through the complete function looking for any epilogue
instructions. If we find an epilogue sequence, re-instate
the correct unwind instructions if there is more code past
that epilogue -- this will correctly handle an x86 function
with multiple epilogues in it.
NB there is still a bug with the "eh_frame augmented"
UnwindPlans and mid-function epilogues. Looking at that next.
<rdar://problem/18863406>
llvm-svn: 225770
This completes the compact unwind support for x86 targets.
I'm still skipping the UNWIND_X86_64_MODE_STACK_IND encodings for
x86_64 right now because clang was emitting bad data for this form
until it was fixed in r217020 circa Sep 2014.
arm64 parsing still needs to be added.
llvm-svn: 224698
Most of the changes are to the FuncUnwinders class -- as we've added
more types of unwind information, the way this class was written was
making it a mess to maintain. Instead of trying to keep one
"non-call site" unwind plan and one "call site" unwind plan, track
all the different types of unwind plans we can possibly retrieve for
each function and have the call-site/non-call-site accessor methods
retrieve those.
Add a real "fast unwind plan" for x86_64 / i386 -- when doing an
unwind through a function, this only has to read the first 4 bytes
to tell if the function has a standard prologue sequence. If so,
we can use the architecture default unwind plan to backtrace
through this function. If we try to retrieve the save location for
other registers later on, a real unwind plan will be used. This
one is just for doing fast backtraces.
Change the compact unwind plan importer to fill in the valid address
range it is valid for.
Compact unwind, in theory, may have multiple entries for a single
function. The FuncUnwinders rewrite includes the start of supporting
this correctly. In practice compact unwind encodings are used for
the entire range of the function today -- in fact, sometimes the same
encoding is used for multiple functions that have the same unwind
rules. But I want to handle a single function that has multiple
different compact unwind UnwindPlans eventually.
llvm-svn: 224689
When lldb has a binary with protected section contents,
don't use the on-disk representation of that compact
uwnind -- read it only out of live memory where it has
been decrypted.
llvm-svn: 224670
The compact unwind importer is getting the wrong unwind info for one
case that I found. I haven't been able to fix the problem tonight
and I don't want to leave TOT behaving incorrectly, so just ignore
compact unwind until I can get to the bottom of this.
llvm-svn: 224321
section for x86_64 and i386 targets on Darwin systems. Currently only the
compact unwind encoding for normal frame-using functions is supported but it
will be easy handle frameless functions when I have a bit more free time to
test it. The LSDA and personality routines for functions are also retrieved
correctly for functions from the compact unwind section.
This new code is very fresh -- it passes the lldb testsuite and I've done
by-hand inspection of many functions and am getting correct behavior for all
of them. There may need to be some bug fixing over the next couple weeks as
I exercise and test it further. But I think it's fine right now so I'm
committing it.
<rdar://problem/13220837>
llvm-svn: 223625
encounter clang::ExternalASTSources that are not instances
of ClangExternalASTSourceCommon. We used to blithely
assume that all are, and so we could use static_cast<>.
That's no longer the case, so we have to have these AST
sources register themselves.
llvm-svn: 223560
support to LLDB. It includes the following:
- Changed DeclVendor to TypeVendor.
- Made the ObjCLanguageRuntime provide a DeclVendor
rather than a TypeVendor.
- Changed the consumers of TypeVendors to use
DeclVendors instead.
- Provided a few convenience functions on
ClangASTContext to make that easier.
llvm-svn: 223433
retrieves the personality routine addr and the
LSDA addr. Don't bother checking with the
"non-call site" unwind plan - this kind of
information is only going to come from the
call site unwind plan.
llvm-svn: 222226
eh_frame data. These two pieces of information are used in the
process of exception handler unwinding on SysV ABI systems.
This patch reads the data from the eh_frame section
(DWARFCallFrameInfo.cpp), allows for it to be saved & read out
of a given UnwindPlan (UnwindPlan.h, UnwindPlan.cpp) - as well
as printing the information in the UnwindPlan::Dump method - and
adds methods to the FuncUnwinders object so that higher levels
can query if a given function has an LSDA / personality routine
defined.
It's only lightly tested, but seems to be working correctly as long
as your have this information in eh_frame. Does not address getting
this information from compact unwind yet on Darwin systems.
<rdar://problem/18742797>
llvm-svn: 222214
Fixed include:
- Change Platform::ResolveExecutable(...) to take a ModuleSpec instead of a FileSpec + ArchSpec to help resolve executables correctly when we have just a path + UUID (no arch).
- Add the ability to set the listener in SBLaunchInfo and SBAttachInfo in case you don't want to use the debugger as the default listener.
- Modified all places that use the SBLaunchInfo/SBAttachInfo and the internal ProcessLaunchInfo/ProcessAttachInfo to not take a listener as a parameter since it is in the launch/attach info now
- Load a module's sections by default when removing a module from a target. Since we create JIT modules for expressions and helper functions, we could end up with stale data in the section load list if a module was removed from the target as the section load list would still have entries for the unloaded module. Target now has the following functions to help unload all sections a single or multiple modules:
size_t
Target::UnloadModuleSections (const ModuleList &module_list);
size_t
Target::UnloadModuleSections (const lldb::ModuleSP &module_sp);
llvm-svn: 222167
relative paths, like:
/whatever/llvm/lib/Sema/../../include/llvm/Sema/
That causes problems with our type uniquing, since we use the declaration file
and line as one component of the uniquing, and different ways of getting to the
same file will have different directory spellings, though they are functionally
equivalent. We end up with two copies of the exact same type because of this,
and that makes the expression parser give "duplicate type" errors.
I added a method to resolve paths with ../ in them and used that in the FileSpec::Equals,
for comparing Declarations and for doing Breakpoint compares as well, since they also
suffer from this if you specify breakpoints by full path (since nobody knows what
../'s to insert...)
<rdar://problem/18765814>
llvm-svn: 222075
Summary:
PowerPC handles the stack chain with the current stack pointer being a pointer
to the backchain (CFA). LLDB currently has no way of handling this, so this
adds a "CFA is dereferenced from a register" type.
Discussed with Jason Molenda, who also provided the initial patch for this.
Reviewers: jasonmolenda
Reviewed By: jasonmolenda
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D6182
llvm-svn: 221788
let's let lldb try the arch default unwind every time but not destructively --
it doesn't permanently replace the main unwind method for that function from
now on.
This fix is for <rdar://problem/18683658>.
I tested it against Ryan Brown's go program test case and also a
collection of core files of tricky unwind scenarios
<rdar://problem/15664282> <rdar://problem/15835846>
<rdar://problem/15982682> <rdar://problem/16099440>
<rdar://problem/17364005> <rdar://problem/18556719>
that I've fixed over the last 6-9 months.
llvm-svn: 221238
output style can be customized. Change the built-in default to be
more similar to gdb's disassembly formatting.
The disassembly-format for a gdb-like output is
${addr-file-or-load} <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>:
The disassembly-format for the lldb style output is
{${function.initial-function}{${module.file.basename}`}{${function.name-without-args}}:\n}{${function.changed}\n{${module.file.basename}`}{${function.name-without-args}}:\n}{${current-pc-arrow} }{${addr-file-or-load}}:
The two backticks in the lldb style formatter triggers the sub-expression evaluation in
CommandInterpreter::PreprocessCommand() so you can't use that one as-is ... changing to
use ' characters instead of ` would work around that.
<rdar://problem/9885398>
llvm-svn: 219544
works, as do breakpoints, run and pause, display zeroth frame.
See
http://reviews.llvm.org/D5503
for a fuller description of the changes in this commit.
llvm-svn: 218596
For the Objective-C case, we do not have a "function type" notion, so we actually end up wrapping the clang ObjCMethodDecl in the Impl object, and ask function-y questions of it
In general, you can always ask for return type, number of arguments, and type of each argument using the TypeMemberFunction layer - but in the C++ case, you can also acquire a Type object for the function itself, which instead you can't do in the Objective-C case
llvm-svn: 218132
In practice, 64bit eh_frame is not used even for x86_64 binaries. The main reason is in eh_frame we almost always use pc-relative addressing, so addresses are within 32bits and gcc just sticks to 32bit eh_frame.
I generated 64bit eh_frame for Android Java runtime and unwind successfully in gdb, and in lldb with this patch.
Patch by Tong Shen.
llvm-svn: 216409
We decided to use assmbly profiler instead of eh_frame for frame 0 because for compiler generated code, eh_frame is usually synchronous(a.k.a. only valid at call site); and we have no way to tell if it's asynchronous or not.
But for x86 & x86_64 compiler generated code:
1. clang & GCC describes all prologue instructions in eh_frame;
2. mid-function stack pointer altering instructions can be easily detected.
So we can grab eh_frame, and use assembly profiler to augment it into asynchronous unwind table.
This change also benefits hand-written assembly; eh_frame for hand-written assembly is often asynchronous,so we have a much better chance to successfully unwind through them.
Change by Tong Shen.
llvm-svn: 216406
with binaries in the dyld shared cache (esp on iOS) where the file
address for the executable binary (maybe from memory, maybe from
an expanded copy of the dyld shared cache) is different from the
file address in the dSYM. In that case, ObjectFileMachO replaces
the file addresses from the original binary with the dSYM file
addresses (usually 0-based) -- lldb doesn't have a notion of two
file addresses for a given module so they need to agree.
There was a cache of file addresses over in the Symtab so I added
a method to the Module and the objects within to clear any file address
caches if they exist, and added an implementation in the Symtab
module to do that.
<rdar://problem/16929569>
llvm-svn: 216258
What it does:
- it introduces a concept of EncodingToType to the ObjCLanguageRuntime
The ObjC runtime has a "type encoding" feature that describes types as strings
The EncodingToType is a decoder for that format, making types out of type encoding strings
This feature already existed in some shape as we were using it to create method signatures out of the runtime, but this checkin extends the parser to support the full syntax, and moves things so that more parts of LLDB have access to this decoder
- it splits the ClassDescriptorV2 object to its own file, it was starting to grow too large
- it adds to the ClassDescriptor mechanism a notion of ivar storage; the ObjC runtime vends ivar information as well as method information
While ivar information is not ready for prime type (i.e. we don't want to add it to the runtime generated types for expression evaluator usage), there are potentially useful scenarios in which realizing ivar types could be useful. For now, the ClassDescriptor is going to hold ivar information directly. Existing code already allows describing ivars, this patch hooks those moving parts up so that one can actually ask a ClassDescriptor about ivars for the class it represents
and as a couple minor niceties:
- it makes it possible to retrieve the LLDB ClangASTContext that is associated to a clang::ASTContext
- it extends the ValueObject-to-ClassDescriptor API in the language runtime to deal correctly with base-class hierarchies
llvm-svn: 216026