Use IRBuilder::Create(Cond)?Br instead of constructing instructions
manually with BranchInst::Create(). It's consistent with other
uses of IRBuilder in this pass, and has an additional important
benefit:
Using IRBuilder will ensure that new branch instruction will get
the same debug location as original terminator instruction it will
eventually replace.
For now I'm not adding a testcase, as currently original terminator
instruction also lack debug location due to missing debug location
propagation in BasicBlock::splitBasicBlock. That is, the testcase
will accompany the fix for the latter I'm going to mail soon.
llvm-svn: 239550
Test Plan: regression test suite
Reviewers: eugenis, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10343
llvm-svn: 239438
isInductionPHI wants to calculate the stride based on the pointee size.
However, this is not possible when the pointee is zero sized.
This fixes PR23763.
llvm-svn: 239143
Alternatively, this type could be derived on-demand whenever
getResultElementType is called - if someone thinks that's the better
choice (simple time/space tradeoff), I'm happy to give it a go.
llvm-svn: 238716
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238602
This patch extends EarlyCSE to take advantage of the information that a controlling branch gives us about the value of a Value within this and dominated basic blocks. If the current block has a single predecessor with a controlling branch, we can infer what the branch condition must have been to execute this block. The actual change to support this is downright simple because EarlyCSE's existing scoped hash table logic deals with most of the complexity around merging.
The patch actually implements two optimizations.
1) The first is analogous to JumpThreading in that it enables EarlyCSE's CSE handling to fold branches which are exactly redundant due to a previous branch to branches on constants. (It doesn't actually replace the branch or change the CFG.) This is pretty clearly a win since it enables substantial CFG simplification before we start trying to inline.
2) The second is analogous to CVP in that it exploits the knowledge gained to replace dominated *uses* of the original value. EarlyCSE does not otherwise reason about specific uses, so this is the more arguable one. It does enable further simplication and constant folding within the rest of the visit by EarlyCSE.
In both cases, the added code only handles the easy dominance based case of each optimization. The general case is deferred to the existing passes.
Differential Revision: http://reviews.llvm.org/D9763
llvm-svn: 238071
Now that Intrinsic::ID is a typed enum, we can forward declare it and so return it from this method.
This updates all users which were either using an unsigned to store it, or had a now unnecessary cast.
llvm-svn: 237810
The array passed to LoadAndStorePromoter's constructor was a constant reference to a SmallVectorImpl, which is just the same as passing an ArrayRef.
Also, the data in the array can be 'const Instruction*' instead of 'Instruction*'. Its not possible to convert a SmallVectorImpl<T*> to SmallVectorImpl<const T*>, but ArrayRef does provide such a method.
Currently this added calls to makeArrayRef which should be a nop, but i'm going to kick off a discussion about improving ArrayRef to not need these.
llvm-svn: 237226
We already had a method to iterate over all the incoming values of a PHI. This just changes all eligible code to use it.
Ineligible code included anything which cared about the index, or was also trying to get the i'th incoming BB.
llvm-svn: 237169
Summary:
This helper function creates a ctor function, which calls sanitizer's
init function with given arguments. This constructor is then expected
to be added to module's ctors. The patch helps unifying how sanitizer
constructor functions are created, and how init functions are called
across all sanitizers.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8777
llvm-svn: 236627
Many of the callers already have the pointer type anyway, and for the
couple of callers that don't it's pretty easy to call PointerType::get
on the pointee type and address space.
This avoids LLParser from using PointerType::getElementType when parsing
GlobalAliases from IR.
llvm-svn: 236160
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
When using bit tests for hole checks, we call AddPredecessorToBlock to give the
phi node a value from the bit test block. This would break if we've
previously called removePredecessor on the default destination because the
switch is fully covered.
Test case by Mark Lacey.
llvm-svn: 235771
(reverted in r235533)
Original commit message:
"Calls to llvm::Value::mutateType are becoming extra-sensitive now that
instructions have extra type information that will not be derived from
operands or result type (alloca, gep, load, call/invoke, etc... ). The
special-handling for mutateType will get more complicated as this work
continues - it might be worth making mutateType virtual & pushing the
complexity down into the classes that need special handling. But with
only two significant uses of mutateType (vectorization and linking) this
seems OK for now.
Totally open to ideas/suggestions/improvements, of course.
With this, and a bunch of exceptions, we can roundtrip an indirect call
site through bitcode and IR. (a direct call site is actually trickier...
I haven't figured out how to deal with the IR deserializer's lazy
construction of Function/GlobalVariable decl's based on the type of the
entity which means looking through the "pointer to T" type referring to
the global)"
The remapping done in ValueMapper for LTO was insufficient as the types
weren't correctly mapped (though I was using the post-mapped operands,
some of those operands might not have been mapped yet so the type
wouldn't be post-mapped yet). Instead use the pre-mapped type and
explicitly map all the types.
llvm-svn: 235651
This patch refactors the definition of common utility function "isInductionPHI" to LoopUtils.cpp.
This fixes compilation error when configured with -DBUILD_SHARED_LIBS=ON
llvm-svn: 235577
This reverts commit r235458.
It looks like this might be breaking something LTO-ish. Looking into it
& will recommit with a fix/test case/etc once I've got more to go on.
llvm-svn: 235533
Calls to llvm::Value::mutateType are becoming extra-sensitive now that
instructions have extra type information that will not be derived from
operands or result type (alloca, gep, load, call/invoke, etc... ). The
special-handling for mutateType will get more complicated as this work
continues - it might be worth making mutateType virtual & pushing the
complexity down into the classes that need special handling. But with
only two significant uses of mutateType (vectorization and linking) this
seems OK for now.
Totally open to ideas/suggestions/improvements, of course.
With this, and a bunch of exceptions, we can roundtrip an indirect call
site through bitcode and IR. (a direct call site is actually trickier...
I haven't figured out how to deal with the IR deserializer's lazy
construction of Function/GlobalVariable decl's based on the type of the
entity which means looking through the "pointer to T" type referring to
the global)
llvm-svn: 235458
Summary:
This lets us use range based for loops.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9169
llvm-svn: 235416
Summary:
MemorySSA uses this algorithm as well, and this enables us to reuse the code in both places.
There are no actual algorithm or datastructure changes in here, just code movement.
Reviewers: qcolombet, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9118
llvm-svn: 235406
Remove early returns for when `getVariable()` is null, and just assert
that it never happens. The Verifier already confirms that there's a
valid variable on these intrinsics, so we should assume the debug info
isn't broken. I also updated a check for a `!dbg` attachment, which the
Verifier similarly guarantees.
llvm-svn: 235400
This commit fixes the code which adds lifetime markers in InlineFunction to skip
zero-sized allocas instead of asserting on them.
rdar://problem/20531155
llvm-svn: 235312
This patch refactors reduction identification code out of LoopVectorizer and
exposes them as common utilities.
No functional change.
Review: http://reviews.llvm.org/D9046
llvm-svn: 235284
Remove 'inlinedAt:' from MDLocalVariable. Besides saving some memory
(variables with it seem to be single largest `Metadata` contributer to
memory usage right now in -g -flto builds), this stops optimization and
backend passes from having to change local variables.
The 'inlinedAt:' field was used by the backend in two ways:
1. To tell the backend whether and into what a variable was inlined.
2. To create a unique id for each inlined variable.
Instead, rely on the 'inlinedAt:' field of the intrinsic's `!dbg`
attachment, and change the DWARF backend to use a typedef called
`InlinedVariable` which is `std::pair<MDLocalVariable*, MDLocation*>`.
This `DebugLoc` is already passed reliably through the backend (as
verified by r234021).
This commit removes the check from r234021, but I added a new check
(that will survive) in r235048, and changed the `DIBuilder` API in
r235041 to require a `!dbg` attachment whose 'scope:` is in the same
`MDSubprogram` as the variable's.
If this breaks your out-of-tree testcases, perhaps the script I used
(mdlocalvariable-drop-inlinedat.sh) will help; I'll attach it to PR22778
in a moment.
llvm-svn: 235050
Change `DIBuilder::insertDeclare()` and `insertDbgValueIntrinsic()` to
take an `MDLocation*`/`DebugLoc` parameter which it attaches to the
created intrinsic. Assert at creation time that the `scope:` field's
subprogram matches the variable's. There's a matching `clang` commit to
use the API.
The context for this is PR22778, which is removing the `inlinedAt:`
field from `MDLocalVariable`, instead deferring to the `!dbg` location
attached to the debug info intrinsic. The best way to ensure we always
have a `!dbg` attachment is to require one at creation time. I'll be
adding verifier checks next, but this API change is the best way to
shake out frontend bugs.
Note: I added an `llvm_unreachable()` in `bindings/go` and passed in
`nullptr` for the `DebugLoc`. The `llgo` folks will eventually need to
pass a valid `DebugLoc` here.
llvm-svn: 235041
Change `DICompileUnit::replaceSubprograms()` and
`DICompileUnit::replaceGlobalVariables()` to match the `MDCompileUnit`
equivalents that they're wrapping.
llvm-svn: 234852
Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note
that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`.
llvm-svn: 234850
Summary:
Runtime unrolling of loops needs to emit an expression to compute the
loop's runtime trip-count. Avoid runtime unrolling if this computation
will be expensive.
Depends on D8993.
Reviewers: atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8994
llvm-svn: 234846
This is along the same lines as r234832, but for `DILocation`. Clean
out all accessors from `DILocation`. Any callers should be using
`MDLocation` directly (e.g., via `operator->()`).
llvm-svn: 234835
Completely gut `DIExpression`, turning it into a simple wrapper around
`MDExpression *`. There are two bits of magic left:
- It's constructed from `const MDExpression*` but convertible to
`MDExpression*`.
- It's default-constructed to `nullptr`.
Otherwise, it should behave quite like a raw pointer. Once I've done
the same to the rest of the `DIDescriptor` subclasses, I'll come back to
delete them entirely (and update call sites as necessary to deal with
the missing magic).
llvm-svn: 234832
As documented in PR23200 (and the FIXMEs I've added to the code here),
this logic is fairly broken: it modifies the `LLVMContext` in a way that
affects other modules and cannot be serialized to assembly/bitcode. For
now, move it over to `MDLocation::computeNewDiscriminators()` anyway.
llvm-svn: 234825
I don't see a reason to add the `copyWithNewScope()` API over to
`MDLocation` -- it seems to be a holdover from when creating locations
required knowing details of operand layout -- so change
`AddDiscriminators` to call `MDLocation::get()` directly. Should be no
functionality change here.
llvm-svn: 234824
Clean up a predicate I added in r229731, fix the relevant comment and
add a test case. The earlier version is confusing to read and was also
buggy (probably not a coincidence) till Alexey fixed it in r233881.
llvm-svn: 234701
Rewrite `DILocation::atSameLineAs()` as `MDLocation::canDiscriminate()`
with a doxygen comment explaining its purpose. I've added a few FIXMEs
where I think this check is too weak; fixing that is tracked by PR23199.
llvm-svn: 234674
WinEH currently turns invokes into calls. Long term, we will reconsider
this, but for now, make sure we remap the operands and clone the
successors of the new terminator.
llvm-svn: 234608
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.
Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this:
if (auto CS = CallSite(V)) // think dyn_cast
instead of:
if (CallSite CS = V)
This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.
llvm-svn: 234601
The code uses a priority queue and a worklist, which share the same
visited set, but the visited set is only updated when inserting into
the priority queue. Instead, switch to using separate visited sets
for the priority queue and worklist.
llvm-svn: 234425
Replace all uses of `DITypedArray<>` with `MDTupleTypedArrayWrapper<>`
and `MDTypeRefArray`. The APIs are completely different, but the
provided functionality is the same: treat an `MDTuple` as if it's an
array of a particular element type.
To simplify this patch a bit, I've temporarily typedef'ed
`DebugNodeArray` to `DIArray` and `MDTypeRefArray` to `DITypeArray`.
I've also temporarily conditionalized the accessors to check for null --
eventually these should be changed to asserts and the callers should
check for null themselves.
There's a tiny accompanying patch to clang.
llvm-svn: 234290
Summary:
Instead of making a local copy of `checkInterfaceFunction` for each
sanitizer, move the function in a common place.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8775
llvm-svn: 234220
We used to do this before refactorings around r225640.
Some clang users checked for _chk libcall availability using:
__has_builtin(__builtin___memcpy_chk)
When compiling with -fno-builtin, this is always true.
When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
end up with fortified libcalls, which isn't acceptable in a freestanding
environment which only provides their non-fortified counterparts.
Until we change clang and/or teach external users to check for availability
differently, disregard the "nobuiltin" attribute and TLI::has.
Workaround for PR23093.
llvm-svn: 233776
This patch tries to merge duplicate landing pads when they branch to a common shared target.
Given IR that looks like this:
lpad1:
%exn = landingpad {i8*, i32} personality i32 (...)* @__gxx_personality_v0
cleanup
br label %shared_resume
lpad2:
%exn2 = landingpad {i8*, i32} personality i32 (...)* @__gxx_personality_v0
cleanup
br label %shared_resume
shared_resume:
call void @fn()
ret void
}
We can rewrite the users of both landing pad blocks to use one of them. This will generally allow the shared_resume block to be merged with the common landing pad as well.
Without this change, tail duplication would likely kick in - creating N (2 in this case) copies of the shared_resume basic block.
Differential Revision: http://reviews.llvm.org/D8297
llvm-svn: 233125
strchr("123!", C) != nullptr is a common pattern to check if C is one
of 1, 2, 3 or !. If the largest element of the string is smaller than
the target's register size we can easily create a bitfield and just
do a simple test for set membership.
int foo(char C) { return strchr("123!", C) != nullptr; } now becomes
cmpl $64, %edi ## range check
sbbb %al, %al
movabsq $0xE000200000001, %rcx
btq %rdi, %rcx ## bit test
sbbb %cl, %cl
andb %al, %cl ## and the two conditions
andb $1, %cl
movzbl %cl, %eax ## returning an int
ret
(imho the backend should expand this into a series of branches, but
that's a different story)
The code is currently limited to bit fields that fit in a register, so
usually 64 or 32 bits. Sadly, this misses anything using alpha chars
or {}. This could be fixed by just emitting a i128 bit field, but that
can generate really ugly code so we have to find a better way. To some
degree this is also recreating switch lowering logic, but we can't
simply emit a switch instruction and thus change the CFG within
instcombine.
llvm-svn: 232902
Summary:
This change splits `makeICmpRegion` into `makeAllowedICmpRegion` and
`makeSatisfyingICmpRegion` with slightly different contracts. The first
one is useful for determining what values some expression //may// take,
given that a certain `icmp` evaluates to true. The second one is useful
for determining what values are guaranteed to //satisfy// a given
`icmp`.
Reviewers: nlewycky
Reviewed By: nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8345
llvm-svn: 232575
Allow unresolved nodes through the `MapMetadata()` if
`RF_NoModuleLevelChanges`, since there's no remapping to do anyway.
This fixes PR22929. I'll add a clang test as a follow-up.
llvm-svn: 232449
I'm just going to migrate these in a pretty ad-hoc & incremental way -
providing the backwards compatible API for now, then locally removing
it, fixing a few callers, adding it back in and commiting those callers.
Rinse, repeat.
The assertions should ensure that if I get this wrong we'll find out
about it and not just have one giant patch to revert, recommit, revert,
recommit, etc.
llvm-svn: 232240
The CallGraphNode function "addCalledFunction()" asserts that edges are not to intrinsics.
This patch makes sure that the Inliner does not add such an edge to the callgraph.
Fix for clang crash by assertion: https://llvm.org/bugs/show_bug.cgi?id=22857
Differential Revision: http://reviews.llvm.org/D8231
llvm-svn: 231927
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
Runtime unrollng will introduce a runtime check in loop prologue.
If the unrolled loop is a inner loop, then the proglogue will be inside
the outer loop. LICM pass can help to promote the runtime check out if
the checked value is loop invariant.
llvm-svn: 231630
Summary:
rL225282 introduced an ad-hoc way to promote some additions to nuw or
nsw. Since then SCEV has become smarter in directly proving no-wrap;
and using the canonical "ext(A op B) == ext(A) op ext(B)" method of
proving no-wrap is just as powerful now. Rip out the existing
complexity in favor of getting SCEV to do all the heaving lifting
internally.
This change does not add any unit tests because it is supposed to be a
non-functional change. Tests added in rL225282 and rL226075 are valid
tests for this change.
Reviewers: atrick, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7981
llvm-svn: 231306
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
This patch adds the isProfitableToHoist API. For AArch64, we want to prevent a
fmul from being hoisted in cases where it is more profitable to form a
fmsub/fmadd.
Phabricator Review: http://reviews.llvm.org/D7299
Patch by Lawrence Hu <lawrence@codeaurora.org>
llvm-svn: 230241
Don't spend the entire iteration space in the scalar loop prologue if
computing the trip count overflows. This change also gets rid of the
backedge check in the prologue loop and the extra check for
overflowing trip-count.
Differential Revision: http://reviews.llvm.org/D7715
llvm-svn: 229731
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.
This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.
The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".
llvm-svn: 229094
analysis.
We're already using TTI in SimplifyCFG, so remove the hard-baked "cheapness"
heuristic and use TTI directly. Generally NFC intended, but we're using a slightly
different heuristic now so there is a slight test churn.
Test changes:
* combine-comparisons-by-cse.ll: Removed unneeded branch check.
* 2014-08-04-muls-it.ll: Test now doesn't branch but emits muleq.
* coalesce-subregs.ll: Superfluous block check.
* 2008-01-02-hoist-fp-add.ll: fadd is safe to speculate. Change to udiv.
* PhiBlockMerge.ll: Superfluous CFG checking code. Main checks still present.
* select-gep.ll: A variable GEP is not expensive, just TCC_Basic, according to the TTI.
llvm-svn: 228826
This allows IDEs to recognize the entire set of header files for
each of the core LLVM projects.
Differential Revision: http://reviews.llvm.org/D7526
Reviewed By: Chris Bieneman
llvm-svn: 228798
If the landingpad of the invoke is using a personality function that
catches asynch exceptions, then it can catch a trap.
Also add some landingpads to invalid LLVM IR test cases that lack them.
Over-the-shoulder reviewed by David Majnemer.
llvm-svn: 228782
`DIExpression` deals with `uint64_t`, so it doesn't make sense that
`createExpression()` is created from `int64_t`. Switch to `uint64_t` to
unify them.
I've temporarily left in the `int64_t` version, which forwards to the
`uint64_t` version. I'll delete it once I've updated the callers.
llvm-svn: 228619
wrong basic block.
This would happen when the result of an invoke was used by a phi instruction
in the invoke's normal destination block. An instruction to reload the invoke's
value would get inserted before the critical edge was split and a new basic
block (which is the correct insertion point for the reload) was created. This
commit fixes the bug by splitting the critical edge before all the reload
instructions are inserted.
Also, hoist up the code which computes the insertion point to the only place
that need that computation.
rdar://problem/15978721
llvm-svn: 228566
Summary:
The alias.scope metadata represents sets of things an instruction might
alias with. When generically combining the metadata from two
instructions the result must be the union of the original sets, because
the new instruction might alias with anything any of the original
instructions aliased with.
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7490
llvm-svn: 228525
Track unresolved nodes under distinct `MDNode`s during `MapMetadata()`,
and resolve them at the end. Previously, these cycles wouldn't get
resolved.
llvm-svn: 228180
Summary: MSVC can compile "LoopID->getOperand(0) == LoopID" when LoopID is MDNode*.
Test Plan: no regression
Reviewers: mkuper
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D7327
llvm-svn: 227853
Summary:
CUDA driver can unroll loops when jit-compiling PTX. To prevent CUDA
driver from unrolling a loop marked with llvm.loop.unroll.disable is not
unrolled by CUDA driver, we need to emit .pragma "nounroll" at the
header of that loop.
This patch also extracts getting unroll metadata from loop ID metadata
into a shared helper function.
Test Plan: test/CodeGen/NVPTX/nounroll.ll
Reviewers: eliben, meheff, jholewinski
Reviewed By: jholewinski
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D7041
llvm-svn: 227703
Patch by: Igor Laevsky <igor@azulsystems.com>
"Currently SplitBlockPredecessors generates incorrect code in case if basic block we are going to split has a landingpad. Also seems like it is fairly common case among it's users to conditionally call either SplitBlockPredecessors or SplitLandingPadPredecessors. Because of this I think it is reasonable to add this condition directly into SplitBlockPredecessors."
Differential Revision: http://reviews.llvm.org/D7157
llvm-svn: 227390
abomination.
For starters, this API is incredibly slow. In order to lookup the name
of a pass it must take a memory fence to acquire a pointer to the
managed static pass registry, and then potentially acquire locks while
it consults this registry for information about what passes exist by
that name. This stops the world of LLVMs in your process no matter
how little they cared about the result.
To make this more joyful, you'll note that we are preserving many passes
which *do not exist* any more, or are not even analyses which one might
wish to have be preserved. This means we do all the work only to say
"nope" with no error to the user.
String-based APIs are a *bad idea*. String-based APIs that cannot
produce any meaningful error are an even worse idea. =/
I have a patch that simply removes this API completely, but I'm hesitant
to commit it as I don't really want to perniciously break out-of-tree
users of the old pass manager. I'd rather they just have to migrate to
the new one at some point. If others disagree and would like me to kill
it with fire, just say the word. =]
llvm-svn: 227294
COMDATs must be identically named to the symbol. When support for COMDATs was
introduced, the symbol rewriter was not updated, resulting in rewriting failing
for symbols which were placed into COMDATs. This corrects the behaviour and
adds test cases for this.
llvm-svn: 227261
This was introduced in a faulty refactoring (r225640, mea culpa):
the tests weren't testing the return values, so, for both
__strcpy_chk and __stpcpy_chk, we would return the end of the
buffer (matching stpcpy) instead of the beginning (for strcpy).
The root cause was the prefix "__" being ignored when comparing,
which made us always pick LibFunc::stpcpy_chk.
Pass the LibFunc::Func directly to avoid this kind of error.
Also, make the testcases as explicit as possible to prevent this.
The now-useful testcases expose another, entangled, stpcpy problem,
with the further simplification. This was introduced in a
refactoring (r225640) to match the original behavior.
However, this leads to problems when successive simplifications
generate several similar instructions, none of which are removed
by the custom replaceAllUsesWith.
For instance, InstCombine (the main user) doesn't erase the
instruction in its custom RAUW. When trying to simplify say
__stpcpy_chk:
- first, an stpcpy is created (fortified simplifier),
- second, a memcpy is created (normal simplifier), but the
stpcpy call isn't removed.
- third, InstCombine later revisits the instructions,
and simplifies the first stpcpy to a memcpy. We now have
two memcpys.
llvm-svn: 227250
An unreachable default destination can be exploited by other optimizations and
allows for more efficient lowering. Both the SDag switch lowering and
LowerSwitch can exploit unreachable defaults.
Also make TurnSwitchRangeICmp handle switches with unreachable default.
This is kind of separate change, but it cannot be tested without the change
above, and I don't want to land the change above without this since that would
regress other tests.
Differential Revision: http://reviews.llvm.org/D6471
llvm-svn: 227125
It was already in the Scalar header and referenced extensively as being
in this library, the source file was just in the utils directory for
some reason. No actual functionality changed. I noticed as it didn't
make sense to add a pass header to the utils headers.
llvm-svn: 226991
SimplifyCFG currently does this transformation, but I'm planning to remove that
to allow other passes, such as this one, to exploit the unreachable default.
This patch takes care to keep track of what case values are unreachable even
after the transformation, allowing for more efficient lowering.
Differential Revision: http://reviews.llvm.org/D6697
llvm-svn: 226934
This reverts commit r176827.
Björn Steinbrink pointed out that this didn't actually fix the bug
(PR15555) it was attempting to fix.
With this reverted, we can now remove landingpad cleanups that
immediately resume unwinding, converting the invoke to a call.
llvm-svn: 226850
When two calls from the same MDLocation are inlined they currently get
treated as one inlined function call (creating difficulty debugging,
duplicate variables, etc).
Clang worked around this by including column information on inline calls
which doesn't address LTO inlining or calls to the same function from
the same line and column (such as through a macro). It also didn't
address ctor and member function calls.
By making the inlinedAt locations distinct, every call site has an
explicitly distinct location that cannot be coalesced with any other
call.
This can produce linearly (2x in the worst case where every call is
inlined and the call instruction has a non-call instruction at the same
location) more debug locations. Any increase beyond that are in cases
where the Clang workaround was insufficient and the new scheme is
creating necessary distinct nodes that were being erroneously coalesced
previously.
After this change to LLVM the incomplete workarounds in Clang. That
should reduce the number of debug locations (in a build without column
info, the default on Darwin, not the default on Linux) by not creating
pseudo-distinct locations for every call to an inline function.
(oh, and I made the inlined-at chain rebuilding iterative instead of
recursive because I was having trouble wrapping my head around it the
way it was - open to discussion on the right design for that function
(including going back to a recursive solution))
llvm-svn: 226736
a more direct approach: a type-erased glorified function pointer. Now we
can pass a function pointer into this for the easy case and we can even
pass a lambda into it in the interesting case in the instruction
combiner.
I'll be using this shortly to simplify the interfaces to InstCombiner,
but this helps pave the way and seems like a better design for the
libcall simplifier utility.
llvm-svn: 226640
Now that the clone methods used by `MapMetadata()` don't do any
remapping (and return a temporary), they make more sense as member
functions on `MDNode` (and subclasses).
llvm-svn: 226541
a DominatorTree argument as that is the analysis that it wants to
update.
This removes the last non-loop utility function in Utils/ which accepts
a raw Pass argument.
llvm-svn: 226537
As part of PR22235, introduce `DwarfNode` and `GenericDwarfNode`. The
former is a metadata node with a DWARF tag. The latter matches our
current (generic) schema of a header with string (and stringified
integer) data and an arbitrary number of operands.
This doesn't move it into place yet; that change will require a large
number of testcase updates.
llvm-svn: 226529
As pointed out in r226501, the distinction between `MDNode` and
`UniquableMDNode` is confusing. When we need subclasses of `MDNode`
that don't use all its functionality it might make sense to break it
apart again, but until then this makes the code clearer.
llvm-svn: 226520
Take advantage of the new ability of temporary nodes to mutate to
distinct and uniqued nodes to greatly simplify the `MapMetadata()`
helper functions.
llvm-svn: 226511
Change `MDTuple::getTemporary()` and `MDLocation::getTemporary()` to
return (effectively) `std::unique_ptr<T, MDNode::deleteTemporary>`, and
clean up call sites. (For now, `DIBuilder` call sites just call
`release()` immediately.)
There's an accompanying change in each of clang and polly to use the new
API.
llvm-svn: 226504
Remove `MDNodeFwdDecl` (as promised in r226481). Aside from API
changes, there's no real functionality change here.
`MDNode::getTemporary()` now forwards to `MDTuple::getTemporary()`,
which returns a tuple with `isTemporary()` equal to true.
The main point is that we can now add temporaries of other `MDNode`
subclasses, needed for PR22235 (I introduced `MDNodeFwdDecl` in the
first place because I didn't recognize this need, and thought they were
only needed to handle forward references).
A few things left out of (or highlighted by) this commit:
- I've had to remove the (few) uses of `std::unique_ptr<>` to deal
with temporaries, since the destructor is no longer public.
`getTemporary()` should probably return the equivalent of
`std::unique_ptr<T, MDNode::deleteTemporary>`.
- `MDLocation::getTemporary()` doesn't exist yet (worse, it actually
does exist, but does the wrong thing: `MDNode::getTemporary()` is
inherited and returns an `MDTuple`).
- `MDNode` now only has one subclass, `UniquableMDNode`, and the
distinction between them is actually somewhat confusing.
I'll fix those up next.
llvm-svn: 226501
Change `MDNode::isDistinct()` to only apply to 'distinct' nodes (not
temporaries), and introduce `MDNode::isUniqued()` and
`MDNode::isTemporary()` for the other two possibilities.
llvm-svn: 226482
and updated.
This may appear to remove handling for things like alias analysis when
splitting critical edges here, but in fact no callers of SplitEdge
relied on this. Similarly, all of them wanted to preserve LCSSA if there
was any update of the loop info. That makes the interface much simpler.
With this, all of BasicBlockUtils.h is free of Pass arguments and
prepared for the new pass manager. This is tho majority of utilities
that relied on pass arguments.
llvm-svn: 226459
APIs and replace it and numerous booleans with an option struct.
The critical edge splitting API has a really large surface of flags and
so it seems worth burning a small option struct / builder. This struct
can be constructed with the various preserved analyses and then flags
can be flipped in a builder style.
The various users are now responsible for directly passing along their
analysis information. This should be enough for the critical edge
splitting to work cleanly with the new pass manager as well.
This API is still pretty crufty and could be cleaned up a lot, but I've
focused on this change just threading an option struct rather than
a pass through the API.
llvm-svn: 226456
we can while splitting critical edges.
The only code which called this and didn't require simplified loops to
be preserved is polly, and the code behaves correctly there anyways.
Without this change, it becomes really hard to share this code with the
new pass manager where things like preserving loop simplify form don't
make any sense.
If anyone discovers this code behaving incorrectly, what it *should* be
testing for is whether the loops it needs to be in simplified form are
in fact in that form. It should always be trying to preserve that form
when it exists.
llvm-svn: 226443
SplitLandingPadPredecessors and remove the Pass argument from its
interface.
Another step to the utilities being usable with both old and new pass
managers.
llvm-svn: 226426
rather than relying on the pass object.
This one is a bit annoying, but will pay off. First, supporting this one
will make the next one much easier, and for utilities like LoopSimplify,
this is moving them (slowly) closer to not having to pass the pass
object around throughout their APIs.
llvm-svn: 226396
interface, removing Pass from its interface.
This also makes those analyses optional so that passes which don't even
preserve these (or use them) can skip the logic entirely.
llvm-svn: 226394
optionally updated by MergeBlockIntoPredecessors.
No functionality changed, just refactoring to clear the way for the new
pass manager.
llvm-svn: 226392
accepting a Pass and querying it for analyses.
This is necessary to allow the utilities to work both with the old and
new pass managers, and I also think this makes the interface much more
clear and helps the reader know what analyses the utility can actually
handle. I plan to repeat this process iteratively to clean up all the
pass utilities.
llvm-svn: 226386
cleaner to derive from the generic base.
Thise removes a ton of boiler plate code and somewhat strange and
pointless indirections. It also remove a bunch of the previously needed
friend declarations. To fully remove these, I also lifted the verify
logic into the generic LoopInfoBase, which seems good anyways -- it is
generic and useful logic even for the machine side.
llvm-svn: 226385
This was dead even before I refactored how we initialized it, but my
refactoring made it trivially dead and it is now caught by a Clang
warning. This fixes the warning and should clean up the -Werror bot
failures (sorry!).
llvm-svn: 226376
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.
This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.
llvm-svn: 226373
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.
Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.
llvm-svn: 226157
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.
This is in preparation for porting this analysis to the new pass
manager.
No functionality changed, and updates inbound for Clang and Polly.
llvm-svn: 226078
The bug was introduced in r225282. r225282 assumed that sub X, Y is
the same as add X, -Y. This is not correct if we are going to upgrade
the sub to sub nuw. This change fixes the issue by making the
optimization ignore sub instructions.
Differential Revision: http://reviews.llvm.org/D6979
llvm-svn: 226075
Although this makes the `cast<>` assert more often, the
`assert(Node->isResolved())` on the following line would assert in all
those cases. So, no functionality change here.
llvm-svn: 225903
It turns out, all callsites of the simplifier are guarded by a check for
CallInst::getCalledFunction (i.e., to make sure the callee is direct).
This check wasn't done when trying to further optimize a simplified fortified
libcall, introduced by a refactoring in r225640.
Fix that, add a testcase, and document the requirement.
llvm-svn: 225895
The functions {pred,succ,use,user}_{begin,end} exist, but many users
have to check *_begin() with *_end() by hand to determine if the
BasicBlock or User is empty. Fix this with a standard *_empty(),
demonstrating a few usecases.
llvm-svn: 225760
Split `GenericMDNode` into two classes (with more descriptive names).
- `UniquableMDNode` will be a common subclass for `MDNode`s that are
sometimes uniqued like constants, and sometimes 'distinct'.
This class gets the (short-lived) RAUW support and related API.
- `MDTuple` is the basic tuple that has always been returned by
`MDNode::get()`. This is as opposed to more specific nodes to be
added soon, which have additional fields, custom assembly syntax,
and extra semantics.
This class gets the hash-related logic, since other sublcasses of
`UniquableMDNode` may need to hash based on other fields.
To keep this diff from getting too big, I've added casts to `MDTuple`
that won't really scale as new subclasses of `UniquableMDNode` are
added, but I'll clean those up incrementally.
(No functionality change intended.)
llvm-svn: 225682
Put them in a separate function, so we can reuse them to further
simplify fortified libcalls as well.
Differential Revision: http://reviews.llvm.org/D6540
llvm-svn: 225639
The checks are the same for fortified counterparts to the libcalls, so
we might as well do them in a single place.
Differential Revision: http://reviews.llvm.org/D6539
llvm-svn: 225638
The previous code assumed that such instructions could not have any uses
outside CaseDest, with the motivation that the instruction could not
dominate CommonDest because CommonDest has phi nodes in it. That simply
isn't true; e.g., CommonDest could have an edge back to itself.
llvm-svn: 225552
Create new copies of distinct `MDNode`s instead of following the
uniquing `MDNode` logic.
Just like self-references (or other cycles), `MapMetadata()` creates a
new node. In practice most calls use `RF_NoModuleLevelChanges`, in
which case nothing is duplicated anyway.
Part of PR22111.
llvm-svn: 225476
The swap implementation for iplist is currently unsupported. Simply splice the
old list into place, which achieves the same purpose. This is needed in order
to thread the -frewrite-map-file frontend option correctly. NFC.
llvm-svn: 225186
a cache of assumptions for a single function, and an immutable pass that
manages those caches.
The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.
Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.
For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.
llvm-svn: 225131
- Fix the case where more than 1 common instructions derived from the same
operand cannot be sunk. When a pair of value has more than 1 derived values
in both branches, only 1 derived value could be sunk.
- Replace BB1 -> (BB2, PN) map with joint value map, i.e.
map of (BB1, BB2) -> PN, which is more accurate to track common ops.
llvm-svn: 224757
A cast that was introduced in r209007 was accidentally left in after the changes made to GlobalAlias rules in r210062. This crashes if the aliasee is a now-leggal ConstantExpr.
llvm-svn: 224756
Take two disjoint Loops L1 and L2.
LoopSimplify fails to simplify some loops (e.g. when indirect branches
are involved). In such situations, it can happen that an exit for L1 is
the header of L2. Thus, when we create PHIs in one of such exits we are
also inserting PHIs in L2 header.
This could break LCSSA form for L2 because these inserted PHIs can also
have uses in L2 exits, which are never handled in the current
implementation. Provide a fix for this corner case and test that we
don't assert/crash on that.
Differential Revision: http://reviews.llvm.org/D6624
rdar://problem/19166231
llvm-svn: 224740
Instead of reusing the name `MapValue()` when mapping `Metadata`, use
`MapMetadata()`. The old name doesn't make much sense after the
`Metadata`/`Value` split.
llvm-svn: 224566
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
llvm-svn: 223802
replaceDbgDeclareForAlloca() replaces an alloca by a value storing the
address of what was the alloca. If there is a dbg.declare corresponding
to that alloca, we need to lower it to a dbg.value describing the additional
dereference operation to be performed to get to the underlying variable.
This is done by adding a DW_OP_deref to the complex location part of the
location description. This deref was added to the end of the operation list,
which is wrong. The expression applies to what is described by the
dbg.{declare,value}, and as we are changing this, we need to apply the
DW_OP_deref as the first operation in the list.
Part of the fix for rdar://19162268.
llvm-svn: 223799
This allows cases like float x; fmin(1.0, x); to be optimized to fminf(1.0f, x);
rdar://19049359
Differential Revision: http://reviews.llvm.org/D6496
llvm-svn: 223270
Follow up from r222926. Also handle multiple destinations from merged
cases on multiple and subsequent phi instructions.
rdar://problem/19106978
llvm-svn: 223135
An unreachable default destination can be exploited by other optimizations, and
SDag lowering is now prepared to handle them efficiently.
For example, branches to the unreachable destination will be optimized away,
such as in the case of range checks for switch lookup tables.
On 64-bit Linux, this reduces the size of a clang bootstrap by 80 kB (and
Chromium by 30 kB).
llvm-svn: 223050
Switch cases statements with sequential values that branch to the same
destination BB may often be handled together in a single new source BB.
In this scenario we need to remove remaining incoming values from PHI
instructions in the destination BB, as to match the number of source
branches.
Differential Revision: http://reviews.llvm.org/D6415
rdar://problem/19040894
llvm-svn: 222926
Fixed missing dominance check.
Original commit message:
This optimization tries to reuse the generated compare instruction, if there is a comparison against the default value after the switch.
Example:
if (idx < tablesize)
r = table[idx]; // table does not contain default_value
else
r = default_value;
if (r != default_value)
...
Is optimized to:
cond = idx < tablesize;
if (cond)
r = table[idx];
else
r = default_value;
if (cond)
...
Jump threading will then eliminate the second if(cond).
llvm-svn: 222891
This optimization tries to reuse the generated compare instruction, if there is a comparison against the default value after the switch.
Example:
if (idx < tablesize)
r = table[idx]; // table does not contain default_value
else
r = default_value;
if (r != default_value)
...
Is optimized to:
cond = idx < tablesize;
if (cond)
r = table[idx];
else
r = default_value;
if (cond)
...
\endcode
Jump threading will then eliminate the second if(cond).
llvm-svn: 222872
Code seems cleaner and easier to understand this way
This is basically r222416, after fixes for MSVC lack of standard
support, and a few cleaning (got rid of a warning).
Thanks Nakamura Takumi and Nico Weber for the MSVC fixes.
llvm-svn: 222472
Currently LoopUnroll generates a prologue loop before the main loop
body to execute first N%UnrollFactor iterations. Also, this loop is
used if trip-count can overflow - it's determined by a runtime check.
However, we've been mistakenly optimizing this loop to a linear code for
UnrollFactor = 2, not taking into account that it also serves as a safe
version of the loop if its trip-count overflows.
llvm-svn: 222451
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
Summary:
move the code from BreakCriticalEdges::runOnFunction()
into a separate utility function llvm::SplitAllCriticalEdges()
so that it can be used independently.
No functionality change intended.
Test Plan: check-llvm
Reviewers: nlewycky
Reviewed By: nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6313
llvm-svn: 222288
When converting a switch to a lookup table we might have to generate a bitmaks
to encode and check for holes in the original switch statement.
The type of this mask depends on the number of switch statements, which can
result in illegal types for pretty much all architectures.
To avoid unnecessary type legalization and help FastISel this commit increases
the size of the bitmask to next power-of-2 value when necessary.
This fixes rdar://problem/18984639.
llvm-svn: 222168
This is a simple optimization for switch table lookup:
It computes the output value directly with an (optional) mul and add if there is a linear mapping between index and output.
Example:
int f1(int x) {
switch (x) {
case 0: return 10;
case 1: return 11;
case 2: return 12;
case 3: return 13;
}
return 0;
}
generates:
define i32 @f1(i32 %x) #0 {
entry:
%0 = icmp ult i32 %x, 4
br i1 %0, label %switch.lookup, label %return
switch.lookup:
%switch.offset = add i32 %x, 10
ret i32 %switch.offset
return:
ret i32 0
}
llvm-svn: 222121
Windows defines NULL to 0, which when used as an argument to a variadic
function, is not a null pointer constant. As a result, Clang's
-Wsentinel fires on this code. Using '0' would be wrong on most 64-bit
platforms, but both MSVC and Clang make it work on Windows. Sidestep the
issue with nullptr.
llvm-svn: 221940
One of them (__memcpy_chk) was already there, the others were checked
by comparing function names.
Note that the fortified libfuncs are now part of TLI, but are always
available, because they aren't generated, only optimized into the
non-checking versions.
Differential Revision: http://reviews.llvm.org/D6179
llvm-svn: 221817
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
llvm-svn: 221711
Switch statements may have more than one incoming edge into the same BB if they
all have the same value. When the switch statement is converted these incoming
edges are now coming from multiple BBs. Updating all incoming values to be from
a single BB is incorrect and would generate invalid LLVM IR.
The fix is to only update the first occurrence of an incoming value. Switch
lowering will perform subsequent calls to this helper function for each incoming
edge with a new basic block - updating all edges in the process.
This fixes rdar://problem/18916275.
llvm-svn: 221627
We already use the llvm namespace. Remove the unnecessary prefix. Use the
StringRef::equals method to compare with C strings rather than instantiating
std::strings.
Addresses late review comments from David Majnemer.
llvm-svn: 221564
Visual Studio 2012 apparently does not support using alias declarations. Use
the more traditional typedef approach. This should let the Windows buildbots
pass. NFC.
llvm-svn: 221554
This introduces the symbol rewriter. This is an IR->IR transformation that is
implemented as a CodeGenPrepare pass. This allows for the transparent
adjustment of the symbols during compilation.
It provides a clean, simple, elegant solution for symbol inter-positioning. This
technique is often used, such as in the various sanitizers and performance
analysis.
The control of this is via a custom YAML syntax map file that indicates source
to destination mapping, so as to avoid having the compiler to know the exact
details of the source to destination transformations.
llvm-svn: 221548
change LoopSimplifyPass to be !isCFGOnly. The motivation for the earlier patch
(r221223) was that LoopSimplify is not preserved by instcombine though
setPreservesCFG indicates that it is. This change fixes the issue
by making setPreservesCFG no longer imply LoopSimplifyPass, and is therefore less
invasive.
llvm-svn: 221311
Change `Instruction::getAllMetadata()` to modify a vector of `Value`
instead of `MDNode` and update call sites. This is part of PR21433.
llvm-svn: 221027
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.
Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.
llvm-svn: 221024
This restores the commit from SVN r219899 with an additional change to ensure
that the CodeGen is correct for the case that was identified as being incorrect
(originally PR7272).
In the case that during inlining we need to synthesize a value on the stack
(i.e. for passing a value byval), then any function involving that alloca must
be stripped of its tailness as the restriction that it does not access the
parent's stack no longer holds. Unfortunately, a single alloca can cause a
rippling effect through out the inlining as the value may be aliased or may be
mutated through an escaped external call. As such, we simply track if an alloca
has been introduced in the frame during inlining, and strip any tail calls.
llvm-svn: 220811
This patch removes a chunk of special case logic for folding
(float)sqrt((double)x) -> sqrtf(x)
in InstCombineCasts and handles it in the mainstream path of SimplifyLibCalls.
No functional change intended, but I loosened the restriction on the existing
sqrt testcases to allow for this optimization even without unsafe-fp-math because
that's the existing behavior.
I also added a missing test case for not shrinking the llvm.sqrt.f64 intrinsic
in case the result is used as a double.
Differential Revision: http://reviews.llvm.org/D5919
llvm-svn: 220514
When we hoist two loads above an if, we can preserve the nonnull metadata. We could also do the same for sinking them, but we appear to not handle metadata at all in that case.
Thanks to Hal for the review.
Differential Revision: http://reviews.llvm.org/D5910
llvm-svn: 220392
When a call to a double-precision libm function has fast-math semantics
(via function attribute for now because there is no IR-level FMF on calls),
we can avoid fpext/fptrunc operations and use the float version of the call
if the input and output are both float.
We already do this optimization using a command-line option; this patch just
adds the ability for fast-math to use the existing functionality.
I moved the cl::opt from InstructionCombining into SimplifyLibCalls because
it's only ever used internally to that class.
Modified the existing test cases to use the unsafe-fp-math attribute rather
than repeating all tests.
This patch should solve: http://llvm.org/bugs/show_bug.cgi?id=17850
Differential Revision: http://reviews.llvm.org/D5893
llvm-svn: 220390
combineMetadata is used when merging two instructions into one. This change teaches it how to merge 'nonnull' - i.e. only preserve it on the new instruction if it's set on both sources. This isn't actually used yet since I haven't adjusted any of the call sites to pass in nonnull as a 'known metadata'.
llvm-svn: 220325
When functions are inlined, instructions without debug information are
attributed to the call site's DebugLoc. After inlining, inlined static
allocas are moved to the caller's entry block, adjacent to the caller's
original static alloca instructions. By retaining the call site's
DebugLoc, these instructions could cause instructions that were
subsequently inserted at the entry block to pick up the same DebugLoc.
Patch by Wolfgang Pieb!
llvm-svn: 220255
If a square root call has an FP multiplication argument that can be reassociated,
then we can hoist a repeated factor out of the square root call and into a fabs().
In the simplest case, this:
y = sqrt(x * x);
becomes this:
y = fabs(x);
This patch relies on an earlier optimization in instcombine or reassociate to put the
multiplication tree into a canonical form, so we don't have to search over
every permutation of the multiplication tree.
Because there are no IR-level FastMathFlags for intrinsics (PR21290), we have to
use function-level attributes to do this optimization. This needs to be fixed
for both the intrinsics and in the backend.
Differential Revision: http://reviews.llvm.org/D5787
llvm-svn: 219944
For pointer-typed function arguments, enhanced alignment can be asserted using
the 'align' attribute. When inlining, if this enhanced alignment information is
not otherwise available, preserve it using @llvm.assume-based alignment
assumptions.
llvm-svn: 219876
Eliminate library calls and intrinsic calls to fabs when the input
is a squared value.
Note that no unsafe-math / fast-math assumptions are needed for
this optimization.
Differential Revision: http://reviews.llvm.org/D5777
llvm-svn: 219717
This is the same optimization of r219233 with modifications to support PHIs with multiple incoming edges from the same block
and a test to check that this condition is handled.
llvm-svn: 219656
instead
We used to transform this:
define void @test6(i1 %cond, i8* %ptr) {
entry:
br i1 %cond, label %bb1, label %bb2
bb1:
br label %bb2
bb2:
%ptr.2 = phi i8* [ %ptr, %entry ], [ null, %bb1 ]
store i8 2, i8* %ptr.2, align 8
ret void
}
into this:
define void @test6(i1 %cond, i8* %ptr) {
%ptr.2 = select i1 %cond, i8* null, i8* %ptr
store i8 2, i8* %ptr.2, align 8
ret void
}
because the simplifycfg transformation into selects would happen to happen
before the simplifycfg transformation that removes unreachable control flow
(We have 'unreachable control flow' due to the store to null which is undefined
behavior).
The existing transformation that removes unreachable control flow in simplifycfg
is:
/// If BB has an incoming value that will always trigger undefined behavior
/// (eg. null pointer dereference), remove the branch leading here.
static bool removeUndefIntroducingPredecessor(BasicBlock *BB)
Now we generate:
define void @test6(i1 %cond, i8* %ptr) {
store i8 2, i8* %ptr.2, align 8
ret void
}
I did not see any impact on the test-suite + externals.
rdar://18596215
llvm-svn: 219462
`LoopUnrollPass` says that it preserves `LoopInfo` -- make it so. In
particular, tell `LoopInfo` about copies of inner loops when unrolling
the outer loop.
Conservatively, also tell `ScalarEvolution` to forget about the original
versions of these loops, since their inputs may have changed.
Fixes PR20987.
llvm-svn: 219241
This optimization tries to convert switch instructions that are used to select a value with only 2 unique cases + default block
to a select or a couple of selects (depending if the default block is reachable or not).
The typical case this optimization wants to be able to optimize is this one:
Example:
switch (a) {
case 10: %0 = icmp eq i32 %a, 10
return 10; %1 = select i1 %0, i32 10, i32 4
case 20: ----> %2 = icmp eq i32 %a, 20
return 2; %3 = select i1 %2, i32 2, i32 %1
default:
return 4;
}
It also sets the base for further optimizations that are planned and being reviewed.
llvm-svn: 219223
`DIExpression`'s elements are 64-bit integers that are stored as
`ConstantInt`. The accessors already encapsulate the storage. This
commit updates the `DIBuilder` API to also encapsulate that.
llvm-svn: 218797
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787