This is fine as nothing in the code relies on leader and memory
leader being the same for a given congruency class. Ack'ed by
Dan.
Fixes PR33720.
llvm-svn: 307699
Summary:
As metioned in https://reviews.llvm.org/D34576, checkings in
`collectConstantCandidates` can be replaced by using
`llvm::canReplaceOperandWithVariable`.
The only special case is that `collectConstantCandidates` return false for
all `IntrinsicInst` but it is safe for us to collect constant candidates from
`IntrinsicInst`.
Reviewers: pirama, efriedma, srhines
Reviewed By: efriedma
Subscribers: llvm-commits, javed.absar
Differential Revision: https://reviews.llvm.org/D34921
llvm-svn: 307587
InferAddressSpaces does not check address space in collectFlatAddressExpressions,
which causes values with non flat address space put into Postorder and causes
assertion in cloneValueWithNewAddressSpace.
This patch fixes assertion in OpenCL 2.0 conformance test generic_address_space
subtest for amdgcn target.
Differential Revision: https://reviews.llvm.org/D34991
llvm-svn: 307349
Using profile information to guide consthoisting is generally helpful for
performance, so the patch turns it on by default. No compile time or perf
regression were found using spec2000 and spec2006 on x86. Some significant
improvement (>20%) was seen on internal benchmarks.
Differential Revision: https://reviews.llvm.org/D35063
llvm-svn: 307338
The patch is to adjust the strategy of frequency based consthoisting:
Previously when the candidate block has the same frequency with the existing
blocks containing a const, it will not hoist the const to the candidate block.
For that case, now we change the strategy to hoist the const if only existing
blocks have more than one block member. This is helpful for reducing code size.
Differential Revision: https://reviews.llvm.org/D35084
llvm-svn: 307328
Going through the Constant methods requires redetermining that the Constant is a ConstantInt and then calling isZero/isOne/isMinusOne.
llvm-svn: 307292
When the formulae search space is huge, LSR uses a series of heuristic to keep
pruning the search space until the number of possible solutions are within
certain limit.
The big hammer of the series of heuristics is NarrowSearchSpaceByPickingWinnerRegs,
which picks the register which is used by the most LSRUses and deletes the other
formulae which don't use the register. This is a effective way to prune the search
space, but quite often not a good way to keep the best solution. We saw cases before
that the heuristic pruned the best formula candidate out of search space.
To relieve the problem, we introduce a new heuristic called
NarrowSearchSpaceByFilterFormulaWithSameScaledReg. The basic idea is in order to
reduce the search space while keeping the best formula, we want to keep as many
formulae with different Scale and ScaledReg as possible. That is because the central
idea of LSR is to choose a group of loop induction variables and use those induction
variables to represent LSRUses. An induction variable candidate is often represented
by the Scale and ScaledReg in a formula. If we have more formulae with different
ScaledReg and Scale to choose, we have better opportunity to find the best solution.
That is why we believe pruning search space by only keeping the best formula with the
same Scale and ScaledReg should be more effective than PickingWinnerReg. And we use
two criteria to choose the best formula with the same Scale and ScaledReg. The first
criteria is to select the formula using less non shared registers, and the second
criteria is to select the formula with less cost got from RateFormula. The patch
implements the heuristic before NarrowSearchSpaceByPickingWinnerRegs, which is the
last resort.
Testing shows we get 1.8% and 2% on two internal benchmarks on x86. llvm nightly
testsuite performance is neutral. We also tried lsr-exp-narrow and it didn't help
on the two improved internal cases we saw.
Differential Revision: https://reviews.llvm.org/D34583
llvm-svn: 307269
Summary: This makes it easier to find out which limitation prevented this pass from doing its work.
Reviewers: karthikthecool, mzolotukhin, efriedma, mcrosier
Reviewed By: mcrosier
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D34940
llvm-svn: 307035
This reverts commit r306313. This breaks selfhost at -O3 and PR33652.
Let me know if you need additional information on reproducing the issue.
llvm-svn: 307021
Summary:
Indices for GEPs that index into a struct type should always be
constants. This added more checks in `collectConstantCandidates:` which make
sure constants for GEP pointer type are not hoisted.
This fixed Bug https://bugs.llvm.org/show_bug.cgi?id=33538
Reviewers: ributzka, rnk
Reviewed By: ributzka
Subscribers: efriedma, llvm-commits, srhines, javed.absar, pirama
Differential Revision: https://reviews.llvm.org/D34576
llvm-svn: 306704
A slightly more efficient way to get constant, we avoid resolving in getSCEV and excessive
invocations, and we don't create a ConstantInt if 'true' branch is taken.
Differential Revision: https://reviews.llvm.org/D34672
llvm-svn: 306503
SROA assumes alloca address space is 0, which causes assertion. This patch fixes that.
Differential Revision: https://reviews.llvm.org/D34104
llvm-svn: 306440
This is based heavily on the work done ni D34285. I mostly wanted to do
test cleanup for the author to save them some time, but I had a really
hard time understanding why it was so hard to write better test cases
for these issues.
The problem is that because SROA does a second rewrite of the loads and
because we *don't* propagate !nonnull for non-pointer loads, we first
introduced invalid !nonnull metadata and then stripped it back off just
in time to avoid most ways of this PR manifesting. Moving to the more
careful utility only fixes this by changing the predicate to look at the
new load's type rather than the target type. However, that *does* fix
the bug, and the utility is much nicer including adding range metadata
to model the nonnull property after a conversion to an integer.
However, we have bigger problems because we don't actually propagate
*range* metadata, and the utility to do this extracted from instcombine
isn't really in good shape to do this currently. It *only* handles the
case of copying range metadata from an integer load to a pointer load.
It doesn't even handle the trivial cases of propagating from one integer
load to another when they are the same width! This utility will need to
be beefed up prior to using in this location to get the metadata to
fully survive.
And even then, we need to go and teach things to turn the range metadata
into an assume the way we do with nonnull so that when we *promote* an
integer we don't lose the information.
All of this will require a new test case that looks kind-of like
`preserve-nonnull.ll` does here but focuses on range metadata. It will
also likely require more testing because it needs to correctly handle
changes to the integer width, especially as SROA actively tries to
change the integer width!
Last but not least, I'm a little worried about hooking the range
metadata up here because the instcombine logic for converting from
a range metadata *to* a nonnull metadata node seems broken in the face
of non-zero address spaces where null is not mapped to the integer `0`.
So that probably needs to get fixed with test cases both in SROA and in
instcombine to cover it.
But this *does* extract the core PR fix from D34285 of preventing the
!nonnull metadata from being propagated in a broken state just long
enough to feed into promotion and crash value tracking.
On D34285 there is some discussion of zero-extend handling because it
isn't necessary. First, the new load size covers all of the non-undef
(ie, possibly initialized) bits. This may even extend past the original
alloca if loading those bits could produce valid data. The only way its
valid for us to zero-extend an integer load in SROA is if the original
code had a zero extend or those bits were undef. And we get to assume
things like undef *never* satifies nonnull, so non undef bits can
participate here. No need to special case the zero-extend handling, it
just falls out correctly.
The original credit goes to Ariel Ben-Yehuda! I'm mostly landing this to
save a few rounds of trivial edits fixing style issues and test case
formulation.
Differental Revision: D34285
llvm-svn: 306379
Summary:
EraseInst didn't report that it made IR changes through MadeChange.
It is essential that changes to the IR are reported correctly,
since for example ReassociatePass::run() will indicate that all
analyses are preserved otherwise.
And the CGPassManager determines if the CallGraph is up-to-date
based on status from InstructionCombiningPass::runOnFunction().
Reviewers: craig.topper, rnk, davide
Reviewed By: rnk, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34616
llvm-svn: 306368
The recommit fixes three bugs: The first one is to use CurrentBlock instead of
PREInstr's Parent as param of performScalarPREInsertion because the Parent
of a clone instruction may be uninitialized. The second one is stop PRE when
CurrentBlock to its predecessor is a backedge and an operand of CurInst is
defined inside of CurrentBlock. The same value defined inside of loop in last
iteration can not be regarded as available. The third one is an out-of-bound
array access in a flipped if guard.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
llvm-svn: 306313
Recommit NFC patch (rL306157) where I missed incrementing the basic block iterator,
which caused loop deletion tests to hang due to infinite loop.
Had reverted it in rL306162.
rL306157 commit message:
Currently, the implementation of delete dead loops has a special case
when the loop being deleted is never executed. This special case
(updating of exit block's incoming values for phis) can be
run as a prepass for non-executable loops before performing
the actual deletion.
llvm-svn: 306254
This reverts commit r306157.
It caused some timeouts in clang tests. Perhaps unreachable loops have
far too many phi nodes.
Reverting and investigating.
llvm-svn: 306162
Currently, the implementation of delete dead loops has a special case
when the loop being deleted is never executed. This special case
(updating of exit block's incoming values for phis) can be
run as a prepass for non-executable loops before performing
the actual deletion.
llvm-svn: 306157
Currently JumpThreading can use LazyValueInfo to analyze an 'and' or 'or' of compare if the compare is fed by a livein of a basic block. This can be used to to prove the condition can't be met for some predecessor and the jump from that predecessor can be moved to the false path of the condition.
But if the compare is something that InstCombine turns into an add and a single compare, it can't be analyzed because the livein is now an input to the add and not the compare.
This patch adds a new method to LVI to get a ConstantRange on an edge. Then we teach jump threading to detect the add livein feeding a compare and to get the ConstantRange and propagate it.
Differential Revision: https://reviews.llvm.org/D33262
llvm-svn: 306085
Summary:
Currently, we incorrectly update exit blocks of loops when there are multiple
edges from a single exiting block to the exit block. This can happen when we
have switches as the terminator of the exiting blocks.
The fix here is to correctly update the phi nodes in the exit block, and remove
all incoming values *except* for one which is from the preheader.
Note: Currently, this error can manifest only while deleting non-executed loops. However, it
is possible to trigger this error in invariant loops, once we enhance the logic
around the exit conditions for the loop check.
Reviewers: chandlerc, dberlin, sanjoy, efriedma
Reviewed by: efriedma
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D34516
llvm-svn: 306048
We weren't actually checking for duplicated stores, as the condition
was always actually false. This was found by Coverity, and I have
no clue how to trigger this in real-world code (although I
tried for a bit).
llvm-svn: 305867
This seems to be interacting badly with ASan somehow, causing false reports of
heap-buffer overflows: PR33514.
> Summary:
> The patch makes instruction count the highest priority for
> LSR solution for X86 (previously registers had highest priority).
>
> Reviewers: qcolombet
>
> Differential Revision: http://reviews.llvm.org/D30562
>
> From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 305720
Summary:
Currently we don't try to do anything with vector xors.
This patch adds support for removing duplicate pairs from a chain of vector xors as its pretty easy to support. We still dont' try to combine the xors with and/ors, but I might try that in a future patch.
Reviewers: mcrosier, davide, resistor
Reviewed By: mcrosier
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34338
llvm-svn: 305704
Summary:
After a single predecessor is merged into a basic block, we need to invalidate
the LVI information for the new merged block, when LVI is not provably true for
all of instructions in the new block.
The test cases added show the correct LVI information using the LVI printer
pass.
Reviewers: reames, dberlin, davide, sanjoy
Reviewed by: dberlin, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34108
llvm-svn: 305699
Summary: use AA to tell whether a load can be moved before a call that writes to memory.
Reviewers: dberlin, davide, sanjoy, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D34115
llvm-svn: 305698