Commit Graph

164 Commits

Author SHA1 Message Date
Dehao Chen 9907e9d860 Do not inline hot callsites for samplepgo in thinlto compile phase.
Summary: Because SamplePGO passes will be invoked twice in ThinLTO build: once at compile phase, the other at backend. We want to make sure the IR at the 2nd phase matches the hot part in profile, thus we do not want to inline hot callsites in the first phase.

Reviewers: tejohnson, eraman

Reviewed By: tejohnson

Subscribers: mehdi_amini, llvm-commits, Prazek

Differential Revision: https://reviews.llvm.org/D31201

llvm-svn: 298428
2017-03-21 19:55:36 +00:00
Easwaran Raman 12585b0148 Improve PGO support for the new inliner
This adds the following to the new PM based inliner in PGO mode:

* Use block frequency analysis to derive callsite's profile count and use
that to adjust thresholds of hot and cold callsites.

* Incrementally update the BFI of the caller after a callee gets inlined
into it. This incremental update is only within an invocation of the run
method - BFI is not preserved across calls to run.
Update the function entry count of the callee after inlining it into a
caller.

* I've tuned the thresholds for the hot and cold callsites using a hacked
up version of the old inliner that explicitly computes BFI on a set of
internal benchmarks and spec. Once the new PM based pipeline stabilizes
(IIRC Chandler mentioned there are known issues) I'll benchmark this
again and adjust the thresholds if required.
Inliner PGO support.

Differential revision: https://reviews.llvm.org/D28331

llvm-svn: 292666
2017-01-20 22:44:04 +00:00
Benjamin Kramer 061f4a5fe6 Apply clang-tidy's performance-unnecessary-value-param to LLVM.
With some minor manual fixes for using function_ref instead of
std::function. No functional change intended.

llvm-svn: 291904
2017-01-13 14:39:03 +00:00
Chandler Carruth 1d96311447 [PM] Provide an initial, minimal port of the inliner to the new pass manager.
This doesn't implement *every* feature of the existing inliner, but
tries to implement the most important ones for building a functional
optimization pipeline and beginning to sort out bugs, regressions, and
other problems.

Notable, but intentional omissions:
- No alloca merging support. Why? Because it isn't clear we want to do
  this at all. Active discussion and investigation is going on to remove
  it, so for simplicity I omitted it.
- No support for trying to iterate on "internally" devirtualized calls.
  Why? Because it adds what I suspect is inappropriate coupling for
  little or no benefit. We will have an outer iteration system that
  tracks devirtualization including that from function passes and
  iterates already. We should improve that rather than approximate it
  here.
- Optimization remarks. Why? Purely to make the patch smaller, no other
  reason at all.

The last one I'll probably work on almost immediately. But I wanted to
skip it in the initial patch to try to focus the change as much as
possible as there is already a lot of code moving around and both of
these *could* be skipped without really disrupting the core logic.

A summary of the different things happening here:

1) Adding the usual new PM class and rigging.

2) Fixing minor underlying assumptions in the inline cost analysis or
   inline logic that don't generally hold in the new PM world.

3) Adding the core pass logic which is in essence a loop over the calls
   in the nodes in the call graph. This is a bit duplicated from the old
   inliner, but only a handful of lines could realistically be shared.
   (I tried at first, and it really didn't help anything.) All told,
   this is only about 100 lines of code, and most of that is the
   mechanics of wiring up analyses from the new PM world.

4) Updating the LazyCallGraph (in the new PM) based on the *newly
   inlined* calls and references. This is very minimal because we cannot
   form cycles.

5) When inlining removes the last use of a function, eagerly nuking the
   body of the function so that any "one use remaining" inline cost
   heuristics are immediately refined, and queuing these functions to be
   completely deleted once inlining is complete and the call graph
   updated to reflect that they have become dead.

6) After all the inlining for a particular function, updating the
   LazyCallGraph and the CGSCC pass manager to reflect the
   function-local simplifications that are done immediately and
   internally by the inline utilties. These are the exact same
   fundamental set of CG updates done by arbitrary function passes.

7) Adding a bunch of test cases to specifically target CGSCC and other
   subtle aspects in the new PM world.

Many thanks to the careful review from Easwaran and Sanjoy and others!

Differential Revision: https://reviews.llvm.org/D24226

llvm-svn: 290161
2016-12-20 03:15:32 +00:00
Daniel Jasper aec2fa352f Revert @llvm.assume with operator bundles (r289755-r289757)
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).

llvm-svn: 290086
2016-12-19 08:22:17 +00:00
Hal Finkel 3ca4a6bcf1 Remove the AssumptionCache
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...

llvm-svn: 289756
2016-12-15 03:02:15 +00:00
Easwaran Raman 61edc107bb Add a new method to create SimpleInliner instance and make pre-inliner use this.
This adds a createFunctionInliningPass pass that takes an InlineParams object and use this to create the pre-inliner pass. This prevents the regular inliner's threshold flag from influencing the preinliner.

Differential revision: https://reviews.llvm.org/D23377

llvm-svn: 278377
2016-08-11 18:24:08 +00:00
Easwaran Raman 1c57cc2b68 Do not directly use inline threshold cl options in cost analysis.
This adds an InlineParams struct which is populated from the command line options by getInlineParams and passed to getInlineCost for the call analyzer to use.

Differential revision: https://reviews.llvm.org/D22120

llvm-svn: 278189
2016-08-10 00:48:04 +00:00
Chandler Carruth 8562d3a5e4 [Inliner] clang-format various parts of the inliner prior to changes
here. NFC.

llvm-svn: 277557
2016-08-03 01:02:31 +00:00
Sean Silva ab6a683765 Avoid using a raw AssumptionCacheTracker in various inliner functions.
This unblocks the new PM part of River's patch in
https://reviews.llvm.org/D22706

Conveniently, this same change was needed for D21921 and so these
changes are just spun out from there.

llvm-svn: 276515
2016-07-23 04:22:50 +00:00
Easwaran Raman 71069cf67d Use ProfileSummaryInfo in inline cost analysis.
Instead of directly using MaxFunctionCount and function entry count to determine callee hotness, use the isHotFunction/isColdFunction methods provided by ProfileSummaryInfo.

Differential revision: http://reviews.llvm.org/D21045

llvm-svn: 272321
2016-06-09 22:23:21 +00:00
Justin Lebar 3db0b85fc8 Make InlineSimple's one-arg constructor explicit. NFC
llvm-svn: 264744
2016-03-29 16:26:06 +00:00
Justin Lebar bd145b3cb2 Reformat a comment in InlineSimple.cpp. NFC
llvm-svn: 264743
2016-03-29 16:26:03 +00:00
Easwaran Raman b1bd398ceb Revert revisions 262636, 262643, 262679, and 262682.
llvm-svn: 262883
2016-03-08 00:36:35 +00:00
Easwaran Raman 3035719c86 Infrastructure for PGO enhancements in inliner
This patch provides the following infrastructure for PGO enhancements in inliner:

Enable the use of block level profile information in inliner
Incremental update of block frequency information during inlining
Update the function entry counts of callees when they get inlined into callers.

Differential Revision: http://reviews.llvm.org/D16381

llvm-svn: 262636
2016-03-03 18:26:33 +00:00
Easwaran Raman f4bb2f0dc3 Refactor threshold computation for inline cost analysis
Differential Revision: http://reviews.llvm.org/D15401

llvm-svn: 257832
2016-01-14 23:16:29 +00:00
Easwaran Raman b9f7120e7a Refactor inline costs analysis by removing the InlineCostAnalysis class
InlineCostAnalysis is an analysis pass without any need for it to be one.
Once it stops being an analysis pass, it doesn't maintain any useful state
and the member functions inside can be made free functions. NFC.

Differential Revision: http://reviews.llvm.org/D15701

llvm-svn: 256521
2015-12-28 20:28:19 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Chandler Carruth 66b3130cda [PM] Split the AssumptionTracker immutable pass into two separate APIs:
a cache of assumptions for a single function, and an immutable pass that
manages those caches.

The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.

Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.

For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.

llvm-svn: 225131
2015-01-04 12:03:27 +00:00
Hal Finkel 74c2f355d2 Add an Assumption-Tracking Pass
This adds an immutable pass, AssumptionTracker, which keeps a cache of
@llvm.assume call instructions within a module. It uses callback value handles
to keep stale functions and intrinsics out of the map, and it relies on any
code that creates new @llvm.assume calls to notify it of the new instructions.
The benefit is that code needing to find @llvm.assume intrinsics can do so
directly, without scanning the function, thus allowing the cost of @llvm.assume
handling to be negligible when none are present.

The current design is intended to be lightweight. We don't keep track of
anything until we need a list of assumptions in some function. The first time
this happens, we scan the function. After that, we add/remove @llvm.assume
calls from the cache in response to registration calls and ValueHandle
callbacks.

There are no new direct test cases for this pass, but because it calls it
validation function upon module finalization, we'll pick up detectable
inconsistencies from the other tests that touch @llvm.assume calls.

This pass will be used by follow-up commits that make use of @llvm.assume.

llvm-svn: 217334
2014-09-07 12:44:26 +00:00
Hal Finkel 0c083024f0 Feed AA to the inliner and use AA->getModRefBehavior in AddAliasScopeMetadata
This feeds AA through the IFI structure into the inliner so that
AddAliasScopeMetadata can use AA->getModRefBehavior to figure out which
functions only access their arguments (instead of just hard-coding some
knowledge of memory intrinsics). Most of the information is only available from
BasicAA; this is important for preserving alias scoping information for
target-specific intrinsics when doing the noalias parameter attribute to
metadata conversion.

llvm-svn: 216866
2014-09-01 09:01:39 +00:00
Craig Topper f40110f4d8 [C++] Use 'nullptr'. Transforms edition.
llvm-svn: 207196
2014-04-25 05:29:35 +00:00
Chandler Carruth 964daaaf19 [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all of the header #include lines, lib/Transforms/...
edition.

This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.

Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.

llvm-svn: 206844
2014-04-22 02:55:47 +00:00
Eli Bendersky 95b540f221 Revive SizeOptLevel-explaining comments that were dropped in r203669
llvm-svn: 203675
2014-03-12 16:44:17 +00:00
Eli Bendersky 49f6565267 Move duplicated code into a helper function (exposed through overload).
There's a bit of duplicated "magic" code in opt.cpp and Clang's CodeGen that
computes the inliner threshold from opt level and size opt level.

This patch moves the code to a function that lives alongside the inliner itself,
providing a convenient overload to the inliner creation.

A separate patch can be committed to Clang to use this once it's committed to
LLVM. Standalone tools that use the inlining pass can also avoid duplicating
this code and fearing it will go out of sync.

Note: this patch also restructures the conditinal logic of the computation to
be cleaner.

llvm-svn: 203669
2014-03-12 16:12:36 +00:00
Craig Topper 3e4c697ca1 [C++11] Add 'override' keyword to virtual methods that override their base class.
llvm-svn: 202953
2014-03-05 09:10:37 +00:00
Chandler Carruth 219b89b987 [Modules] Move CallSite into the IR library where it belogs. It is
abstracting between a CallInst and an InvokeInst, both of which are IR
concepts.

llvm-svn: 202816
2014-03-04 11:01:28 +00:00
Chandler Carruth 6378cf539f [PM] Split the CallGraph out from the ModulePass which creates the
CallGraph.

This makes the CallGraph a totally generic analysis object that is the
container for the graph data structure and the primary interface for
querying and manipulating it. The pass logic is separated into its own
class. For compatibility reasons, the pass provides wrapper methods for
most of the methods on CallGraph -- they all just forward.

This will allow the new pass manager infrastructure to provide its own
analysis pass that constructs the same CallGraph object and makes it
available. The idea is that in the new pass manager, the analysis pass's
'run' method returns a concrete analysis 'result'. Here, that result is
a 'CallGraph'. The 'run' method will typically do only minimal work,
deferring much of the work into the implementation of the result object
in order to be lazy about computing things, but when (like DomTree)
there is *some* up-front computation, the analysis does it prior to
handing the result back to the querying pass.

I know some of this is fairly ugly. I'm happy to change it around if
folks can suggest a cleaner interim state, but there is going to be some
amount of unavoidable ugliness during the transition period. The good
thing is that this is very limited and will naturally go away when the
old pass infrastructure goes away. It won't hang around to bother us
later.

Next up is the initial new-PM-style call graph analysis. =]

llvm-svn: 195722
2013-11-26 04:19:30 +00:00
David Majnemer 927df85de0 Spell "Actual" correctly
llvm-svn: 193954
2013-11-03 11:09:39 +00:00
Rafael Espindola 6554e5a94d Merge CallGraph and BasicCallGraph.
llvm-svn: 193734
2013-10-31 03:03:55 +00:00
Chandler Carruth 4319e2948d Make the inline cost a proper analysis pass. This remains essentially
a dynamic analysis done on each call to the routine. However, now it can
use the standard pass infrastructure to reference other analyses,
instead of a silly setter method. This will become more interesting as
I teach it about more analysis passes.

This updates the two inliner passes to use the inline cost analysis.
Doing so highlights how utterly redundant these two passes are. Either
we should find a cheaper way to do always inlining, or we should merge
the two and just fiddle with the thresholds to get the desired behavior.
I'm leaning increasingly toward the latter as it would also remove the
Inliner sub-class split.

llvm-svn: 173030
2013-01-21 11:39:18 +00:00
Chandler Carruth 0df3e5310c Clean up the formatting and doxygen for the simple inliner a bit. No
functionality changed.

llvm-svn: 173028
2013-01-21 11:39:14 +00:00
Chandler Carruth 9fb823bbd4 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

llvm-svn: 171366
2013-01-02 11:36:10 +00:00
Matt Beaumont-Gay abfc446063 Add 'using' declarations to suppress -Woverloaded-virtual warnings.
llvm-svn: 169214
2012-12-04 05:41:27 +00:00
Chandler Carruth ed0881b2a6 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

llvm-svn: 169131
2012-12-03 16:50:05 +00:00
Micah Villmow cdfe20b97f Move TargetData to DataLayout.
llvm-svn: 165402
2012-10-08 16:38:25 +00:00
Chandler Carruth edd2826f3e Remove a bunch of empty, dead, and no-op methods from all of these
interfaces. These methods were used in the old inline cost system where
there was a persistent cache that had to be updated, invalidated, and
cleared. We're now doing more direct computations that don't require
this intricate dance. Even if we resume some level of caching, it would
almost certainly have a simpler and more narrow interface than this.

llvm-svn: 153813
2012-03-31 12:48:08 +00:00
Chandler Carruth 0539c071ea Initial commit for the rewrite of the inline cost analysis to operate
on a per-callsite walk of the called function's instructions, in
breadth-first order over the potentially reachable set of basic blocks.

This is a major shift in how inline cost analysis works to improve the
accuracy and rationality of inlining decisions. A brief outline of the
algorithm this moves to:

- Build a simplification mapping based on the callsite arguments to the
  function arguments.
- Push the entry block onto a worklist of potentially-live basic blocks.
- Pop the first block off of the *front* of the worklist (for
  breadth-first ordering) and walk its instructions using a custom
  InstVisitor.
- For each instruction's operands, re-map them based on the
  simplification mappings available for the given callsite.
- Compute any simplification possible of the instruction after
  re-mapping, and store that back int othe simplification mapping.
- Compute any bonuses, costs, or other impacts of the instruction on the
  cost metric.
- When the terminator is reached, replace any conditional value in the
  terminator with any simplifications from the mapping we have, and add
  any successors which are not proven to be dead from these
  simplifications to the worklist.
- Pop the next block off of the front of the worklist, and repeat.
- As soon as the cost of inlining exceeds the threshold for the
  callsite, stop analyzing the function in order to bound cost.

The primary goal of this algorithm is to perfectly handle dead code
paths. We do not want any code in trivially dead code paths to impact
inlining decisions. The previous metric was *extremely* flawed here, and
would always subtract the average cost of two successors of
a conditional branch when it was proven to become an unconditional
branch at the callsite. There was no handling of wildly different costs
between the two successors, which would cause inlining when the path
actually taken was too large, and no inlining when the path actually
taken was trivially simple. There was also no handling of the code
*path*, only the immediate successors. These problems vanish completely
now. See the added regression tests for the shiny new features -- we
skip recursive function calls, SROA-killing instructions, and high cost
complex CFG structures when dead at the callsite being analyzed.

Switching to this algorithm required refactoring the inline cost
interface to accept the actual threshold rather than simply returning
a single cost. The resulting interface is pretty bad, and I'm planning
to do lots of interface cleanup after this patch.

Several other refactorings fell out of this, but I've tried to minimize
them for this patch. =/ There is still more cleanup that can be done
here. Please point out anything that you see in review.

I've worked really hard to try to mirror at least the spirit of all of
the previous heuristics in the new model. It's not clear that they are
all correct any more, but I wanted to minimize the change in this single
patch, it's already a bit ridiculous. One heuristic that is *not* yet
mirrored is to allow inlining of functions with a dynamic alloca *if*
the caller has a dynamic alloca. I will add this back, but I think the
most reasonable way requires changes to the inliner itself rather than
just the cost metric, and so I've deferred this for a subsequent patch.
The test case is XFAIL-ed until then.

As mentioned in the review mail, this seems to make Clang run about 1%
to 2% faster in -O0, but makes its binary size grow by just under 4%.
I've looked into the 4% growth, and it can be fixed, but requires
changes to other parts of the inliner.

llvm-svn: 153812
2012-03-31 12:42:41 +00:00
Chandler Carruth b37fc13a36 Rip out support for 'llvm.noinline'. This thing has a strange history...
It was added in 2007 as the first cut at supporting no-inline
attributes, but we didn't have function attributes of any form at the
time. However, it was added without any mention in the LangRef or other
documentation.

Later on, in 2008, Devang added function notes for 'inline=never' and
then turned them into proper function attributes. From that point
onward, as far as I can tell, the world moved on, and no one has touched
'llvm.noinline' in any meaningful way since.

It's time has now come. We have had better mechanisms for doing this for
a long time, all the frontends I'm aware of use them, and this is just
holding back progress. Given that it was never a documented feature of
the IR, I've provided no auto-upgrade support. If people know of real,
in-the-wild bitcode that relies on this, yell at me and I'll add it, but
I *seriously* doubt anyone cares.

llvm-svn: 152904
2012-03-16 06:10:15 +00:00
Chandler Carruth d7a5f2adb0 Start removing the use of an ad-hoc 'never inline' set and instead
directly query the function information which this set was representing.
This simplifies the interface of the inline cost analysis, and makes the
always-inline pass significantly more efficient.

Previously, always-inline would first make a single set of every
function in the module *except* those marked with the always-inline
attribute. It would then query this set at every call site to see if the
function was a member of the set, and if so, refuse to inline it. This
is quite wasteful. Instead, simply check the function attribute directly
when looking at the callsite.

The normal inliner also had similar redundancy. It added every function
in the module with the noinline attribute to its set to ignore, even
though inside the cost analysis function we *already tested* the
noinline attribute and produced the same result.

The only tricky part of removing this is that we have to be able to
correctly remove only the functions inlined by the always-inline pass
when finalizing, which requires a bit of a hack. Still, much less of
a hack than the set of all non-always-inline functions was. While I was
touching this function, I switched a heavy-weight set to a vector with
sort+unique. The algorithm already had a two-phase insert and removal
pattern, we were just needlessly paying the uniquing cost on every
insert.

This probably speeds up some compiles by a small amount (-O0 compiles
with lots of always-inline, so potentially heavy libc++ users), but I've
not tried to measure it.

I believe there is no functional change here, but yell if you spot one.
None are intended.

Finally, the direction this is going in is to greatly simplify the
inline cost query interface so that we can replace its implementation
with a much more clever one. Along the way, all the APIs get simplified,
so it seems incrementally good.

llvm-svn: 152903
2012-03-16 06:10:13 +00:00
Chad Rosier 50e0b81ea9 Add comment.
llvm-svn: 151431
2012-02-25 03:07:57 +00:00
Chad Rosier 07d37bc1ed Add support for disabling llvm.lifetime intrinsics in the AlwaysInliner. These
are optimization hints, but at -O0 we're not optimizing.  This becomes a problem
when the alwaysinline attribute is abused.
rdar://10921594

llvm-svn: 151429
2012-02-25 02:56:01 +00:00
Andrew Trick f7656015fc Inlining and unrolling heuristics should be aware of free truncs.
We want heuristics to be based on accurate data, but more importantly
we don't want llvm to behave randomly. A benign trunc inserted by an
upstream pass should not cause a wild swings in optimization
level. See PR11034. It's a general problem with threshold-based
heuristics, but we can make it less bad.

llvm-svn: 140919
2011-10-01 01:39:05 +00:00
Andrew Trick caa500bf93 whitespace
llvm-svn: 140916
2011-10-01 01:27:56 +00:00
Owen Anderson 6c18d1aac0 Get rid of static constructors for pass registration. Instead, every pass exposes an initializeMyPassFunction(), which
must be called in the pass's constructor.  This function uses static dependency declarations to recursively initialize
the pass's dependencies.

Clients that only create passes through the createFooPass() APIs will require no changes.  Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.

I have tested this with all standard configurations of clang and llvm-gcc on Darwin.  It is possible that there are problems
with the static dependencies that will only be visible with non-standard options.  If you encounter any crash in pass
registration/creation, please send the testcase to me directly.

llvm-svn: 116820
2010-10-19 17:21:58 +00:00
Owen Anderson 071cee0c81 CallGraphSCC passes implicity require CallGraph analysis.
llvm-svn: 116443
2010-10-13 22:00:45 +00:00
Owen Anderson df7a4f2515 Now with fewer extraneous semicolons!
llvm-svn: 115996
2010-10-07 22:25:06 +00:00
Owen Anderson a7aed18624 Reapply r110396, with fixes to appease the Linux buildbot gods.
llvm-svn: 110460
2010-08-06 18:33:48 +00:00
Owen Anderson bda59bd247 Revert r110396 to fix buildbots.
llvm-svn: 110410
2010-08-06 00:23:35 +00:00
Owen Anderson 755aceb5d0 Don't use PassInfo* as a type identifier for passes. Instead, use the address of the static
ID member as the sole unique type identifier.  Clean up APIs related to this change.

llvm-svn: 110396
2010-08-05 23:42:04 +00:00