When building clang in stage2, when -DCMAKE_BUILD_TYPE=RelWithDebInfo is set,
the developer can expect that the stage2 clang is built using the same mode.
Especially as the performances are much worst in debug mode.
(Principle of least astonishment)
Differential Revision: https://reviews.llvm.org/D53014
This pass transforms SCF.ForOp operations to SCF.WhileOp. The For loop condition is placed in the 'before' region of the while operation, and indctuion variable incrementation + the loop body in the 'after' region. The loop carried values of the while op are the induction variable (IV) of the for-loop + any iter_args specified for the for-loop.
Any 'yield' ops in the for-loop are rewritten to additionally yield the (incremented) induction variable.
This transformation is useful for passes where we want to consider structured control flow solely on the basis of a loop body and the computation of a loop condition. As an example, when doing high-level synthesis in CIRCT, the incrementation of an IV in a for-loop is "just another part" of a circuit datapath, and what we really care about is the distinction between our datapath and our control logic (the condition variable).
Differential Revision: https://reviews.llvm.org/D108454
This test relies on being able to unwind from an arbitrary place inside
libc. While I am not sure this is the cause of the observed flakyness,
it is known that we are not able to unwind correctly from some places in
(linux) libc.
This patch adds additional synchronization to ensure that the inferior
is in the main function (instead of pthread guts) when lldb tries to
unwind it. At the very least, it should make the test runs more
predictable/repeatable.
This patch adds mergeLocalIds andmergeSymbolIds as public functions
for FlatAffineConstraints and FlatAffineValueConstraints respectively.
mergeLocalIds is also required to support divisions in intersection,
subtraction, equality checks, and complement for PresburgerSet.
This patch is part of a series of patches aimed at generalizing affine
dependence analysis.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D110045
This is motivated by an pathological compile time issue during unmerge combining.
We should be able to use the AVF to do simplification. However AMDGPU
has a lot of codegen changes which I'm not sure how to evaluate.
Differential Revision: https://reviews.llvm.org/D109748
First (and biggest) change is to use "Killing/Dead" in place of "Later/Earlier" base for names in DSE. For example, [Maybe]DeadLoc - is a location killed by KillingI instruction. I believe such names are more descriptive and easy to understand than current ones.
Second, there are inconsistencies in naming where different names are used for the same thing. Fixed that too.
Third, reordered parameters of isPartialOverwrite, tryToMergePartialOverlappingStores, isOverwrite to make them consistent between each other. This greatly reduces potential mistakes.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D106947
For artifacts excluding G_TRUNC/G_SEXT, which have IR counterparts, we don't
seem to have debug users of defs. However, in the legalizer we're always calling
MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() which is expensive.
In some rare cases, this contributes significantly to unreasonably long compile
times when we have lots of artifact combiner activity.
To verify this, I added asserts to that function when it actually replaced a debug
use operand with undef for these artifacts. On CTMark with both -O0 and -Os and
debug info enabled, I didn't see a single case where it triggered.
In my measurements I saw around a 0.5% geomean compile-time improvement on -g -O0
for AArch64 with this change.
Differential Revision: https://reviews.llvm.org/D109750
The implication logic for two values that are both negative or non-negative
says that it doesn't matter whether their predicate is signed and unsigned,
but only flips unsigned into signed for further inference. This patch adds
support for flipping a signed predicate into unsigned as well.
Differential Revision: https://reviews.llvm.org/D109959
Reviewed By: nikic
In llvm, for non-alu32 mode, the stack alignment is 64bit so only one
64bit spill per 64bit slot. For alu32 mode, the stack alignment
is 32bit, so it is possible to have two 32bit spills per
64bit slot.
Currently, bpf kernel verifier does not preserve register states
for 32bit spills. That is, one 32bit register may hold a constant
value or a bounded range before spill. After reload from the
stack, the information is lost and sometimes this may cause
verifier failure. For 64bit register spill, the verifier
indeed tries to preserve the register state for reloading.
The current verifier can be modestly changed to handle one
32bit spill per 64bit stack slot with state-preserving reload.
Handling two 32bit spills per 64bit stack slot will require
substantial changes.
This patch changes stack alignment for alu32 to be 64bit.
This way, for any 64bit slot in alu32 mode, only one
32bit or 64bit register values can be saved. Together
with previous-mentioned verifier enhancement, 32bit
spill can be handled with state preserving.
Note that llvm stack slot coallescing
seems only doing adjacent packing which may leave some holes
in the stack. For example,
stack slot 8 <== 8 bytes
stack slot 4 <== 8 bytes with 4 byte hole
stack slot 8 <== 8 bytes
stack slot 4 <== 4 bytes
Differential Revision: https://reviews.llvm.org/D109073
Lots of custom ops have hand-rolled comma-delimited parsing loops, as does
the MLIR parser itself. Provides a standard interface for doing this that
is less error prone and less boilerplate.
While here, extend Delimiter to support <> and {} delimited sequences as
well (I have a use for <> in CIRCT specifically).
Differential Revision: https://reviews.llvm.org/D110122
When following a case of a switch instruction is guaranteed to lead to
UB, we can safely break these edges and redirect those cases into a newly
created unreachable block. As result, CFG will become simpler and we can
remove some of Phi inputs to make further analyzes easier.
Patch by Dmitry Bakunevich!
Differential Revision: https://reviews.llvm.org/D109428
Reviewed By: lebedev.ri
This metadata was intended to mark all accesses within an iteration to be pairwise non-aliasing, in this case because every memory of a base pointer is touched (read or write) at most once. This is typical for 'sweeps' over all data. The stated motivation from D30606 is to ensure that unrolled iterations are considered non-aliasing.
Rhe implemention had multiple issues:
* The structure of the noalias metadata was malformed. D110026 added check in the verifier for this metadata, and the tests were failing since then.
* This is not true for the outer loops of the BLIS matrix multiplication, where it was being inserted. Each element of A, B, C is accessed multiple times, as often as the loop not used as an index is iterating.
* Scopes were added to SecondLevelOtherAliasScopeList (used for the !noalias scop list) on-the-fly when another SCEV was seen. This meant that previously visited instructions would not be updated with alias scopes that are only seen later, missing out those SCEVs they should not be aliasing with.
* Since the !noalias scope list would ideally consists of all other SCEV for this base pointer, we might run quickly into scalability issues. Especially after unrolling there would probably at least once SCEV per instruction and unroll instance.
* The inter-iteration noalias base pointer was not removed after leaving the loop marked with it, effectively marking everything after it to noalias as well.
A solution I considered was to mark each instruction as non-aliasing with its own scope. The instruction itself would obviously alias itself, but such construction might also be considered invalid. Duplicating the instruction (e.g. due to speculation) would mark the instruction non-aliasing with its clone. I don't want to go into this territory, especially since the original motivation of determining unrolled instances as noalias based on SCEV is the what scev-aa does as well.
This effectively reverts D30606 and D35761.
This revision refactors ElementsAttr into an Attribute Interface.
This enables a common interface with which to interact with
element attributes, without needing to modify the builtin
dialect. It also removes a majority (if not all?) of the need for
the current OpaqueElementsAttr, which was originally intended as
a way to opaquely represent data that was not representable by
the other builtin constructs.
The new ElementsAttr interface not only allows for users to
natively represent their data in the way that best suits them,
it also allows for efficient opaque access and iteration of the
underlying data. Attributes using the ElementsAttr interface
can directly expose support for interacting with the held
elements using any C++ data type they claim to support. For
example, DenseIntOrFpElementsAttr supports iteration using
various native C++ integer/float data types, as well as
APInt/APFloat, and more. ElementsAttr instances that refer to
DenseIntOrFpElementsAttr can use all of these data types for
iteration:
```c++
DenseIntOrFpElementsAttr intElementsAttr = ...;
ElementsAttr attr = intElementsAttr;
for (uint64_t value : attr.getValues<uint64_t>())
...;
for (APInt value : attr.getValues<APInt>())
...;
for (IntegerAttr value : attr.getValues<IntegerAttr>())
...;
```
ElementsAttr also supports failable range/iterator access,
allowing for selective code paths depending on data type
support:
```c++
ElementsAttr attr = ...;
if (auto range = attr.tryGetValues<uint64_t>()) {
for (uint64_t value : *range)
...;
}
```
Differential Revision: https://reviews.llvm.org/D109190
Currently DenseElementsAttr only exposes the ability to get the full range of values for a given type T, but there are many situations where we just want the beginning/end iterator. This revision adds proper value_begin/value_end methods for all of the supported T types, and also cleans up a bit of the interface.
Differential Revision: https://reviews.llvm.org/D104173
SparseElementsAttr currently does not perform any verfication on construction, with the only verification existing within the parser. This revision moves the parser verification to SparseElementsAttr, and also adds additional verification for when a sparse index is not valid.
Differential Revision: https://reviews.llvm.org/D109189
* ODS generated operations extend _OperationBase and without this, cannot be marshalled to CAPI functions.
* No test case updates: this kind of interop is quite hard to verify with in-tree tests.
Differential Revision: https://reviews.llvm.org/D110030
Some patterns may share the common DAG structures. Generate a static
function to do the match logic to reduce the binary size.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105797
For x86 Darwin, we have a stack checking feature which re-uses some of this
machinery around stack probing on Windows. Renaming this to be more appropriate
for a generic feature.
Differential Revision: https://reviews.llvm.org/D109993
When building in C mode, the VC runtime assumes that it can use pointer
aliasing through `char *` for the parameter to `__va_start`. Relax the
checks further. In theory we could keep the tests strict for non-system
header code, but this takes the less strict approach as the additional
check doesn't particularly end up being too much more helpful for
correctness. The C++ type system is a bit stricter and requires the
explicit cast which we continue to verify.
This reverts commit 6d7b3d6b3a.
Breaks running cmake with `-DCLANG_ENABLE_STATIC_ANALYZER=OFF`
without turning off CLANG_TIDY_ENABLE_STATIC_ANALYZER.
See comments on https://reviews.llvm.org/D109611 for details.
- Simplify the structure of the new tests.
- Test const containers as well as non-const containers,
since it's easy to do so.
- Remove redundant enable-iffing of helper structs' member functions.
(They're not instantiated unless they're called, and who would call them?)
- Fix indentation and use more consistent SFINAE method in <unordered_map>.
- Add _LIBCPP_INLINE_VISIBILITY on some swap functions.
Differential Revision: https://reviews.llvm.org/D109011
Now that __builtin_is_constant_evaluated() is present on all supported
compilers, we can use it to skip the UB-inducing assert in cases where
the computation might be happening at constexpr time.
Differential Revision: https://reviews.llvm.org/D101674
We implement logic to convert a byte offset into a sequence of GEP
indices for that offset in a number of places. This patch adds a
DataLayout::getGEPIndicesForOffset() method, which implements the
core logic. I've updated SROA, ConstantFolding and InstCombine to
use it, and there's a few more places where it looks relevant.
Differential Revision: https://reviews.llvm.org/D110043
For `memref.subview` operations, when there are more than one
unit-dimensions, the strides need to be used to figure out which of
the unit-dims are actually dropped.
Differential Revision: https://reviews.llvm.org/D109418
The indirect lock table can exhibit a race condition during initializing
and setting/unsetting locks. This occurs if the lock table is
resized by one thread (during an omp_init_lock) and accessed (during an
omp_set|unset_lock) by another thread.
The test runtime/test/lock/omp_init_lock.c test exposed this issue and
will fail if run enough times.
This patch restructures the lock table so pointer/iterator validity is
always kept. Instead of reallocating a single table to a larger size, the
lock table begins preallocated to accommodate 8K locks. Each row of the
table is allocated as needed with each row allowing 1K locks. If the 8K
limit is reached for the initial table, then another table, capable of
holding double the number of locks, is allocated and linked
as the next table. The indices stored in the user's locks take this
linked structure into account when finding the lock within the table.
Differential Revision: https://reviews.llvm.org/D109725
While at it, add the diagnosis message "left operand of comma operator has no effect" (used by GCC) for comma operator.
This also makes Clang diagnose in the constant evaluation context which aligns with GCC/MSVC behavior. (https://godbolt.org/z/7zxb8Tx96)
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D103938