Fix PR21802 by correcting the destruction order of
`ClangExpressionParser` and `IRExecutionUnit` in `ClangFunction`. The
former has hooks into the latter -- i.e., `clang::CGDebugInfo` points at
the `LLVMContext` -- so it needs to be torn down first.
This was exposed by r223802 in LLVM, which started doing work in the
`CGDebugInfo` teardown.
llvm-svn: 223916
Function pointers had a summary generated for them bypassing formatters, directly as part of the ValueObject subsystem
This patch transitions that code into a hardcoded summary
llvm-svn: 223906
The issue with Thumb IT (if/then) instructions is the IT instruction preceeds up to four instructions that are made conditional. If a breakpoint is placed on one of the conditional instructions, the instruction either needs to match the thumb opcode size (2 or 4 bytes) or a BKPT instruction needs to be used as these are always unconditional (even in a IT instruction). If BKPT instructions are used, then we might end up stopping on an instruction that won't get executed. So if we do stop at a BKPT instruction, we need to continue if the condition is not true.
When using the BKPT isntructions are easy in that you don't need to detect the size of the breakpoint that needs to be used when setting a breakpoint even in a thumb IT instruction. The bad part is you will now always stop at the opcode location and let LLDB determine if it should auto-continue. If the BKPT instruction is used, the BKPT that is used for ARM code should be something that also triggers the BKPT instruction in Thumb in case you set a breakpoint in the middle of code and the code is actually Thumb code. A value of 0xE120BE70 will work since the lower 16 bits being 0xBE70 happens to be a Thumb BKPT instruction.
The alternative is to use trap or illegal instructions that the kernel will translate into breakpoint hits. On Mac this was 0xE7FFDEFE for ARM and 0xDEFE for Thumb. The darwin kernel currently doesn't recognize any 32 bit Thumb instruction as a instruction that will get turned into a breakpoint exception (EXC_BREAKPOINT), so we had to use the BKPT instruction on Mac. The linux kernel recognizes a 16 and a 32 bit instruction as valid thumb breakpoint opcodes. The benefit of using 16 or 32 bit instructions is you don't stop on opcodes in a IT block when the condition doesn't match.
To further complicate things, single stepping on ARM is often implemented by modifying the BCR/BVR registers and setting the processor to stop when the PC is not equal to the current value. This means single stepping is another way the ARM target can stop on instructions that won't get executed.
This patch does the following:
1 - Fix the internal debugserver for Apple to use the BKPT instruction for ARM and Thumb
2 - Fix LLDB to catch when we stop in the middle of a Thumb IT instruction and continue if we stop at an instruction that won't execute
3 - Fixes this in a way that will work for any target on any platform as long as it is ARM/Thumb
4 - Adds a patch for ignoring conditions that don't match when in ARM mode (see below)
This patch also provides the code that implements the same thing for ARM instructions, though it is disabled for now. The ARM patch will check the condition of the instruction in ARM mode and continue if the condition isn't true (and therefore the instruction would not be executed). Again, this is not enable, but the code for it has been added.
<rdar://problem/19145455>
llvm-svn: 223851
track of the checksum of the object so we can
track if it is modified. This fixes a testcase
(test/expression_command/issue_11588) on OS X.
Patch by Enrico Granata.
llvm-svn: 223830
- adds a new flag to mark ValueObjects as "synthetic children generated"
- vends new Create functions as part of the SyntheticChildrenFrontEnd that set the flag automatically
- moves synthetic child providers over to using these new functions
No visible feature change, but preparatory work for feature change
llvm-svn: 223819
Such a persisted version is equivalent to evaluating the value via the expression evaluator, and holding on to the $n result of the expression, except this API can be used on SBValues that do not obviously come from an expression (e.g. are the result of a memory lookup)
Expose this via SBValue::Persist() in our public API layer, and ValueObject::Persist() in the lldb_private layer
Includes testcase
Fixes rdar://19136664
llvm-svn: 223711
section for x86_64 and i386 targets on Darwin systems. Currently only the
compact unwind encoding for normal frame-using functions is supported but it
will be easy handle frameless functions when I have a bit more free time to
test it. The LSDA and personality routines for functions are also retrieved
correctly for functions from the compact unwind section.
This new code is very fresh -- it passes the lldb testsuite and I've done
by-hand inspection of many functions and am getting correct behavior for all
of them. There may need to be some bug fixing over the next couple weeks as
I exercise and test it further. But I think it's fine right now so I'm
committing it.
<rdar://problem/13220837>
llvm-svn: 223625
in the "dummy-target". The dummy target breakpoints prime all future
targets. Breakpoints set before any target is created (e.g. breakpoints
in ~/.lldbinit) automatically get set in the dummy target. You can also
list, add & delete breakpoints from the dummy target using the "-D" flag,
which is supported by most of the breakpoint commands.
This removes a long-standing wart in lldb...
<rdar://problem/10881487>
llvm-svn: 223565
encounter clang::ExternalASTSources that are not instances
of ClangExternalASTSourceCommon. We used to blithely
assume that all are, and so we could use static_cast<>.
That's no longer the case, so we have to have these AST
sources register themselves.
llvm-svn: 223560
support to LLDB. It includes the following:
- Changed DeclVendor to TypeVendor.
- Made the ObjCLanguageRuntime provide a DeclVendor
rather than a TypeVendor.
- Changed the consumers of TypeVendors to use
DeclVendors instead.
- Provided a few convenience functions on
ClangASTContext to make that easier.
llvm-svn: 223433
like tgmath.h and stdarg.h into the LLDB installation,
and then finding them through the Host infrastructure.
Also add a script to actually do this on Mac OS X.
llvm-svn: 223430
% lldb /bin/nonono
(lldb) target create "/bin/nonono"
error: unable to find executable for '/usr/bin/nonono'
<deadlock>
The problem was the initial commands 'target create "/bin/nonono"' were put into a pipe and the command interpreter was being run with:
void
CommandInterpreter::RunCommandInterpreter(bool auto_handle_events,
bool spawn_thread,
CommandInterpreterRunOptions &options)
{
// Always re-create the command intepreter when we run it in case
// any file handles have changed.
bool force_create = true;
m_debugger.PushIOHandler(GetIOHandler(force_create, &options));
m_stopped_for_crash = false;
if (auto_handle_events)
m_debugger.StartEventHandlerThread();
if (spawn_thread)
{
m_debugger.StartIOHandlerThread();
}
else
{
m_debugger.ExecuteIOHanders();
if (auto_handle_events)
m_debugger.StopEventHandlerThread();
}
}
If "auto_handle_events" was set to true and "spawn_thread" was false, we would execute:
m_debugger.StartEventHandlerThread();
m_debugger.ExecuteIOHanders();
m_debugger.StopEventHandlerThread();
The problem was there was no synchonization in Debugger::StartEventHandlerThread() to ensure the event handler was listening to events and the the call to "m_debugger.StopEventHandlerThread()" would do:
void
Debugger::StopEventHandlerThread()
{
if (m_event_handler_thread.IsJoinable())
{
GetCommandInterpreter().BroadcastEvent(CommandInterpreter::eBroadcastBitQuitCommandReceived);
m_event_handler_thread.Join(nullptr);
}
}
The problem was that the event thread might not be listening for the CommandInterpreter::eBroadcastBitQuitCommandReceived event yet.
The solution is to make sure the Debugger::DefaultEventHandler() is listening to events before we return from Debugger::StartEventHandlerThread(). Once we have this synchonization we remove the race condition.
This fixes radar:
<rdar://problem/19041192>
llvm-svn: 223083
In the initialization list of IOHandlerConfirm, *this is basically casting
IOHandlerConfirm to its base IOHandlerDelegate and passing it to constructor of
IOHandlerEditline which uses it and crashes as constructor of IOHandlerDelegate
is still not called. Re-ordering the base classes makes sure that constructor of
IOHandlerDelegate runs first.
It would be good to have a test case for this case too.
llvm-svn: 222816
(e.g. breakpoints, stop-hooks) before we have any targets - for instance in
your ~/.lldbinit file. These will then get copied over to any new targets
that get created. So far, you can only make stop-hooks.
Breakpoints will have to learn to move themselves from target to target for
us to get them from no-target to new-target.
We should also make a command & SB API way to prime this ur-target.
llvm-svn: 222600
retrieves the personality routine addr and the
LSDA addr. Don't bother checking with the
"non-call site" unwind plan - this kind of
information is only going to come from the
call site unwind plan.
llvm-svn: 222226
deadlocking when we have the base Unwind class and the HistoryUnwind
subclass both trying to acquire the lock on the same thread to clear
their respective ivar state.
<rdar://problem/18986350>
llvm-svn: 222221
eh_frame data. These two pieces of information are used in the
process of exception handler unwinding on SysV ABI systems.
This patch reads the data from the eh_frame section
(DWARFCallFrameInfo.cpp), allows for it to be saved & read out
of a given UnwindPlan (UnwindPlan.h, UnwindPlan.cpp) - as well
as printing the information in the UnwindPlan::Dump method - and
adds methods to the FuncUnwinders object so that higher levels
can query if a given function has an LSDA / personality routine
defined.
It's only lightly tested, but seems to be working correctly as long
as your have this information in eh_frame. Does not address getting
this information from compact unwind yet on Darwin systems.
<rdar://problem/18742797>
llvm-svn: 222214
Previously using HostThread::GetNativeThread() required an ugly
cast to most-derived type. This solves the issue by simply returning
the derived type directly.
llvm-svn: 222185
Fixed include:
- Change Platform::ResolveExecutable(...) to take a ModuleSpec instead of a FileSpec + ArchSpec to help resolve executables correctly when we have just a path + UUID (no arch).
- Add the ability to set the listener in SBLaunchInfo and SBAttachInfo in case you don't want to use the debugger as the default listener.
- Modified all places that use the SBLaunchInfo/SBAttachInfo and the internal ProcessLaunchInfo/ProcessAttachInfo to not take a listener as a parameter since it is in the launch/attach info now
- Load a module's sections by default when removing a module from a target. Since we create JIT modules for expressions and helper functions, we could end up with stale data in the section load list if a module was removed from the target as the section load list would still have entries for the unloaded module. Target now has the following functions to help unload all sections a single or multiple modules:
size_t
Target::UnloadModuleSections (const ModuleList &module_list);
size_t
Target::UnloadModuleSections (const lldb::ModuleSP &module_sp);
llvm-svn: 222167
Improvements include:
* Use of libedit's wide character support, which is imperfect but a distinct improvement over ASCII-only
* Fallback for ASCII editing path
* Support for a "faint" prompt clearly distinguished from input
* Breaking lines and insert new lines in the middle of a batch by simply pressing return
* Joining lines with forward and backward character deletion
* Detection of paste to suppress automatic formatting and statement completion tests
* Correctly reformatting when lines grow or shrink to occupy different numbers of rows
* Saving multi-line history, and correctly preserving the "tip" of history during editing
* Displaying visible ^C and ^D indications when interrupting input or sending EOF
* Fledgling VI support for multi-line editing
* General correctness and reliability improvements
llvm-svn: 222163
This creates a TargetThreadWindows class and updates the thread
list of the Process with the main thread. Additionally, we
fill out a few more overrides of Process base class methods. We
do not yet update the thread list as threads are created and/or
destroyed, and we do not yet propagate stop reasons to threads as
their states change.
llvm-svn: 222148
relative paths, like:
/whatever/llvm/lib/Sema/../../include/llvm/Sema/
That causes problems with our type uniquing, since we use the declaration file
and line as one component of the uniquing, and different ways of getting to the
same file will have different directory spellings, though they are functionally
equivalent. We end up with two copies of the exact same type because of this,
and that makes the expression parser give "duplicate type" errors.
I added a method to resolve paths with ../ in them and used that in the FileSpec::Equals,
for comparing Declarations and for doing Breakpoint compares as well, since they also
suffer from this if you specify breakpoints by full path (since nobody knows what
../'s to insert...)
<rdar://problem/18765814>
llvm-svn: 222075
RegisterContextLLDB. I have core files of half a dozen tricky
unwind situations on x86/arm and they're all working pretty much
correctly at this point, but we'll need to keep an eye out for
unwinder regressions for a little while; it's tricky to get these
heuristics completely correct in all unwind situations.
<rdar://problem/18937193>
llvm-svn: 221866
Summary:
PowerPC handles the stack chain with the current stack pointer being a pointer
to the backchain (CFA). LLDB currently has no way of handling this, so this
adds a "CFA is dereferenced from a register" type.
Discussed with Jason Molenda, who also provided the initial patch for this.
Reviewers: jasonmolenda
Reviewed By: jasonmolenda
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D6182
llvm-svn: 221788
out we only want to roll back text that was in the
buffer to begin with, so it's not necessary to
provide a pushback stack.
I'm going to use this slightly cleaner API to perform
lookahead for the Objective-C runtime type parser.
llvm-svn: 221640
MSVC warns that not all control paths return a value when a switch
doesn't have a default case handler. Changed explicit value checks
to a default check.
Also, it caught a case where bitwise AND was being used instead of
logical AND. I'm not sure what this fixes, but presumably it is
not covered by any kind of test case.
llvm-svn: 221636
Two flags are introduced:
- preferred display language (as in, ObjC vs. C++)
- summary capping (as in, should a limit be put to the amount of data retrieved)
The meaning - if any - of these options is for individual formatters to establish
The topic of a subsequent commit will be to actually wire these through to individual data formatters
llvm-svn: 221482
This was done by using regular expressions on any basename we find to ensure it is valid.
This fixed setting breakpoints by name with values like '[J]com.robovm.debug.server.apps.SleepLoop.startingUp()V'. This was previously triggering the C++ method name class to identify the string as C++ with a basename of '[J]com.robovm.debug.server.apps.SleepLoop.startingUp' which was obviously incorrect.
The changes also fixed errors in templated function names like "void foo<int>(...)" where "void foo<int>" was being identified incorrectly as the basename. We also handle more C++ operators correctly now.
llvm-svn: 221416
In the llgs world, ProcessWindows will eventually go away and
we'll implement a different protocol. This patch decouples
ProcessWindows from the core debug loop so that this transition
will not be more difficult than it needs to be.
llvm-svn: 221405
The recent StringPrinter changes made this behavior the default, and the setting defaults to yes
If you want to change this behavior and see non-printables unescaped (e.g. "a\tb" as "a b"), set it to false
Fixes rdar://12969594
llvm-svn: 221399
let's let lldb try the arch default unwind every time but not destructively --
it doesn't permanently replace the main unwind method for that function from
now on.
This fix is for <rdar://problem/18683658>.
I tested it against Ryan Brown's go program test case and also a
collection of core files of tricky unwind scenarios
<rdar://problem/15664282> <rdar://problem/15835846>
<rdar://problem/15982682> <rdar://problem/16099440>
<rdar://problem/17364005> <rdar://problem/18556719>
that I've fixed over the last 6-9 months.
llvm-svn: 221238
When processes are launched for debugging on Windows now, LLDB
will detect changes such as DLL loads and unloads, breakpoints,
thread creation and deletion, etc.
These notifications are not yet propagated to LLDB in a way that
LLDB understands what is happening with the process. This only
picks up the notifications from the OS in a way that they can be
sent to LLDB with subsequent patches.
Reviewed by: Scott Graham
Differential Revision: http://reviews.llvm.org/D6037
llvm-svn: 221207
to indicate that we're doing stuff for the expression
parser.
- When for_expression is true, look through @s and find
the actual class rather than just returning id.
- Rename BuildObjCObjectType to BuildObjCObjectPointerType
since it's actually returning an object *pointer* type.
llvm-svn: 220979
This works similarly to the {thread/frame/process/target.script:...} feature - you write a summary string, part of which is
${var.script:someFuncName}
someFuncName is expected to be declared as
def someFuncName(SBValue,otherArgument) - essentially the same as a summary function
Since . -> [] are the only allowed separators, and % is used for custom formatting, .script: would not be a legitimate symbol anyway, which makes this non-ambiguous
llvm-svn: 220821
New functions to give client applications to tools to discover target byte sizes
for addresses prior to ReadMemory. Also added GetPlatform and ReadMemory to the
SBTarget class, since they seemed to be useful utilities to have.
Each new API has had a test case added.
http://reviews.llvm.org/D5867
llvm-svn: 220372
BreakpointLocation::ShouldStop. That worked but wasn't really right,
since there's nothing to guarantee that won't get called more than
once. So this change moves that responsibility to the StopInfoBreakpoint
directly, and then it uses the BreakpointSite to actually do the bumping.
Also fix a test case that was assuming if you had many threads running some
code with a breakpoint in it, the hit count when you stopped would always be
1. Many of the threads could have hit it at the same time...
<rdar://problem/18577603>
llvm-svn: 220358
There were many issues with synchronous mode that we discovered when started to try and add a "batch" mode. There was a race condition where the event handling thread might consume events when in sync mode and other times the Process::WaitForProcessToStop() would consume them. This also led to places where the Process IO handler might or might not get popped when it needed to be.
llvm-svn: 220254
This implements Host::LaunchProcess for windows, and in doing so
does some minor refactor to move towards a more modular process
launching design.
The original motivation for this is that launching processes on
windows needs some very windows specific code, which would live
most appropriately in source/Host/windows somewhere. However,
there is already some common code that all platforms use when
launching a process before delegating to the platform specific
stuff, which lives in source/Host/common/Host.cpp which would
be nice to reuse without duplicating.
This commonality has been abstracted into MonitoringProcessLauncher,
a class which abstracts out the notion of launching a process using
an arbitrary algorithm, and then monitoring it for state changes.
The windows specific launching code lives in ProcessLauncherWindows,
and the posix specific launching code lives in ProcessLauncherPosix.
When launching a process MonitoringProcessLauncher is created, and
then an appropriate delegate launcher is created and given to the
MonitoringProcessLauncher.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D5781
llvm-svn: 219731
after all the commands have been executed except if one of the commands was an execution control
command that stopped because of a signal or exception.
Also adds a variant of SBCommandInterpreter::HandleCommand that takes an SBExecutionContext. That
way you can run an lldb command targeted at a particular target, thread or process w/o having to
select same before running the command.
Also exposes CommandInterpreter::HandleCommandsFromFile to the SBCommandInterpreter API, since that
seemed generally useful.
llvm-svn: 219654
Reviewed at http://reviews.llvm.org/D5738
This adds an SB API into SBProcess:
bool SBProcess::IsInstrumentationRuntimePresent(InstrumentationRuntimeType type);
which simply tells whether a particular InstrumentationRuntime (read "ASan") plugin is present and active.
llvm-svn: 219560
do that (RunCommandInterpreter, HandleCommands, HandleCommandsFromFile) to gather
the options into an options class. Also expose that to the SB API's.
Change the way the "-o" options to the lldb driver are processed so:
1) They are run synchronously - didn't really make any sense to run the asynchronously.
2) The stop on error
3) "quit" in one of the -o commands will not quit lldb - not the command interpreter
that was running the -o commands.
I added an entry to the run options to stop-on-crash, but I haven't implemented that yet.
llvm-svn: 219553
Reviewed at http://reviews.llvm.org/D5592
This patch gives LLDB some ability to interact with AddressSanitizer runtime library, on top of what we already have (historical memory stack traces provided by ASan). Namely, that's the ability to stop on an error caught by ASan, and access the report information that are associated with it. The report information is also exposed into SB API.
More precisely this patch...
adds a new plugin type, InstrumentationRuntime, which should serve as a generic superclass for other instrumentation runtime libraries, these plugins get notified when modules are loaded, so they get a chance to "activate" when a specific dynamic library is loaded
an instance of this plugin type, AddressSanitizerRuntime, which activates itself when it sees the ASan dynamic library or founds ASan statically linked in the executable
adds a collection of these plugins into the Process class
AddressSanitizerRuntime sets an internal breakpoint on __asan::AsanDie(), and when this breakpoint gets hit, it retrieves the report information from ASan
this breakpoint is then exposed as a new StopReason, eStopReasonInstrumentation, with a new StopInfo subclass, InstrumentationRuntimeStopInfo
the StopInfo superclass is extended with a m_extended_info field (it's a StructuredData::ObjectSP), that can hold arbitrary JSON-like data, which is the way the new plugin provides the report data
the "thread info" command now accepts a "-s" flag that prints out the JSON data of a stop reason (same way the "-j" flag works now)
SBThread has a new API, GetStopReasonExtendedInfoAsJSON, which dumps the JSON string into a SBStream
adds a test case for all of this
I plan to also get rid of the original ASan plugin (memory history stack traces) and use an instance of AddressSanitizerRuntime for that purpose.
Kuba
llvm-svn: 219546
output style can be customized. Change the built-in default to be
more similar to gdb's disassembly formatting.
The disassembly-format for a gdb-like output is
${addr-file-or-load} <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>:
The disassembly-format for the lldb style output is
{${function.initial-function}{${module.file.basename}`}{${function.name-without-args}}:\n}{${function.changed}\n{${module.file.basename}`}{${function.name-without-args}}:\n}{${current-pc-arrow} }{${addr-file-or-load}}:
The two backticks in the lldb style formatter triggers the sub-expression evaluation in
CommandInterpreter::PreprocessCommand() so you can't use that one as-is ... changing to
use ' characters instead of ` would work around that.
<rdar://problem/9885398>
llvm-svn: 219544
See http://reviews.llvm.org/D5695 for details.
This change does the following:
Enable lldb-gdbserver (llgs) usage for local-process Linux debugging.
To turn on local llgs debugging support, which is disabled by default, enable this setting:
(lldb) settings set platform.plugin.linux.use-llgs-for-local true
Adds a stream-based Dump() function to FileAction.
Pushes some platform methods that Linux (and FreeBSD) will want to share with MacOSX from PlatformDarwin into PlatformPOSIX.
Reviewed by Greg Clayton.
llvm-svn: 219457
Python one-line execution was using ConnectionFileDescriptor to do
a non-blocking read against a pipe. This won't work on Windows,
as CFD is implemented using select(), and select() only works with
sockets on Windows.
The solution is to use ConnectionGenericFile on Windows, which uses
the native API to do overlapped I/O on the pipe. This in turn
requires re-implementing Host::Pipe on Windows using native OS
handles instead of the more portable _pipe CRT api.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D5679
llvm-svn: 219339
The way to do this is to write a synthetic child provider for your type, and have it vend the (optional) get_value function.
If get_value is defined, and it returns a valid SBValue, that SBValue's value (as in lldb_private::Value) will be used as the synthetic ValueObject's Value
The rationale for doing things this way is twofold:
- there are many possible ways to define a "value" (SBData, a Python number, ...) but SBValue seems general enough as a thing that stores a "value", so we just trade values that way and that keeps our currency trivial
- we could introduce a new level of layering (ValueObjectSyntheticValue), a new kind of formatter (synthetic value producer), but that would complicate the model (can I have a dynamic with no synthetic children but synthetic value? synthetic value with synthetic children but no dynamic?), and I really couldn't see much benefit to be reaped from this added complexity in the matrix
On the other hand, just defining a synthetic child provider with a get_value but returning no actual children is easy enough that it's not a significant road-block to adoption of this feature
Comes with a test case
llvm-svn: 219330
This setting contains the following:
A list containing all the arguments to be passed to the expression parser compiler.
This change also ensures quoted arguments are handled appropriately.
See http://reviews.llvm.org/D5472 for more details.
Change by Tong Shen.
llvm-svn: 219169
This is the first step in getting ConnectionFileDescriptor ported
to Windows. It implements a connection against a disk file for
windows. This supports connection strings of the form file://PATH
which are currently supported only on posix platforms in
ConnectionFileDescriptor.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D5608
llvm-svn: 219145
As part of getting ConnectionFileDescriptor working on Windows,
there is going to be alot of platform specific work to be done.
As a result, the implementation is moving into Host. This patch
performs the code move and fixes up call-sites appropriately.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D5548
llvm-svn: 219143
updating its ivars. We've had a lot of crash reports and careful
analysis shows that we've got multiple threads operating on the
same StackFrame objects, changing their m_sc and m_flags ivars.
<rdar://problem/18406111>
llvm-svn: 218845
the user level. It adds the ability to invent new stepping modes implemented by python classes,
and to view the current thread plan stack and to some extent alter it.
I haven't gotten to documentation or tests yet. But this should not cause any behavior changes
if you don't use it, so its safe to check it in now and work on it incrementally.
llvm-svn: 218642
works, as do breakpoints, run and pause, display zeroth frame.
See
http://reviews.llvm.org/D5503
for a fuller description of the changes in this commit.
llvm-svn: 218596
See http://reviews.llvm.org/D5495 for more details.
These are changes that are part of an effort to support building llgs, within the AOSP source tree, using the Android.mk
build system, when using the llvm/clang/lldb git repos from AOSP replaced with the experimental ones currently in
github.com/tfiala/aosp-{llvm,clang,lldb,compiler-rt}.
llvm-svn: 218568
Changes include:
- fix it so you can select the "host" platform using "platform select host"
- change all callbacks that create platforms to returns shared pointers
- fix TestImageListMultiArchitecture.py to restore the "host" platform by running "platform select host"
- Add a new "PlatformSP Platform::Find(const ConstString &name)" method to get a cached platform
- cache platforms that are created and re-use them instead of always creating a new one
llvm-svn: 218145
For the Objective-C case, we do not have a "function type" notion, so we actually end up wrapping the clang ObjCMethodDecl in the Impl object, and ask function-y questions of it
In general, you can always ask for return type, number of arguments, and type of each argument using the TypeMemberFunction layer - but in the C++ case, you can also acquire a Type object for the function itself, which instead you can't do in the Objective-C case
llvm-svn: 218132
There are several places where multiple threads are accessing the same variables simultaneously without any kind of protection. I propose using std::atomic<> to make it safer. I did a special build of lldb, using the google tool 'thread sanitizer' which identified many cases of multiple threads accessing the same memory. std::atomic is low overhead and does not use any locks for simple types such as int/bool.
See http://reviews.llvm.org/D5302 for more details.
Change by Shawn Best.
llvm-svn: 217818
Also, in case they don't define any, change the default from "Run Python function <blah>" into "For more information run help <blah>"
The core issue here is that Python only allows one docstring per function, so we can't really attach both a short and a long help to the same command easily
There are alternatives but this is not a pressing enough concern to go through the motions quite yet
Fixes rdar://18322737
llvm-svn: 217795
The purpose of a ProcessStructReader is to allow intelligent reading of data from the underlying process
Traditionally, the way this has been handled is to have a load_address and shuffle it around, and use Process::ReadMemory()-kind APIs
With a ProcessStructReader one can define a clang type that matches exactly the definition of the thing they are trying to ingest from the inferior process, and then just point LLDB at where the data is
Since this work is done in terms of clang types, one can honor packed/aligned attributes, sizes of types on the inferior architecture, and similar tricky caveats without having to hardcode them
llvm-svn: 217644
SetName is only used in LLDB to set a thead's own name. Move it there
to match OS X and Windows and slightly reduce the effort in any future
HostThread/ThisThread name refactoring.
llvm-svn: 217521
More work on the GetName/SetName arguments (thread_t vs tid_t) is needed
but this change should restore the build and basic operation.
llvm-svn: 217502
This patch moves creates a thread abstraction that represents a
thread running inside the LLDB process. This is a replacement for
otherwise using lldb::thread_t, and provides a platform agnostic
interface to managing these threads.
Differential Revision: http://reviews.llvm.org/D5198
Reviewed by: Jim Ingham
llvm-svn: 217460
Type Validators have the purpose of looking at a ValueObject, and making sure that there is nothing semantically wrong about the object's contents
For instance, if you have a class that represents a speed, the validator might trigger if the speed value is greater than the speed of light
This first patch hooks up the moving parts in the formatters subsystem, but does not link ValueObjects to TypeValidators, nor lets the SB API be exposed to validators
It also lacks the notion of Python validators
llvm-svn: 217277
lldb's internal memory cache chunks that are read from the remote
system. For a remote connection that is especially slow, a user may
need to reduce it; reading a 512 byte chunk of memory whenever a
4-byte region is requested may not be the right decision in these
kinds of environments.
<rdar://problem/18175117>
llvm-svn: 217083
detct unwind loops but there was a code path through there (using
architecture default unwind plans) that didn't do the check, and
could end up with an infinite loop unwind. Move that code into a
separate method and call it from both places where it is needed.
Also remove the use of ABI::FunctionCallsChangeCFA in that check.
I thought about it a lot and none of the architecutres that we're
supporting today can have a looping CFA.
Since the unwinder isn't using ABI::FunctionCallsChangeCFA() and
ABI::StackUsesFrames(), and the unwinder was the only reason
those methods exists, I removed them from the ABI and all its
plugins.
<rdar://problem/17364005>
llvm-svn: 216992
See http://reviews.llvm.org/D5108 for details.
This change does the following:
* eliminates the Process::GetUnixSignals() virtual method and replaces with a fixed getter.
* replaces the Process UnixSignals storage with a shared pointer.
* adds a Process constructor variant that can be passed the UnixSignalsSP. When the constructor without the UnixSignalsSP is specified, the Host's default UnixSignals is used.
* adds a host-specific version of GetUnixSignals() that is used when we need the host's appropriate UnixSignals variant.
* replaces GetUnixSignals() overrides in PlatformElfCore, ProcessGDBRemote, ProcessFreeBSD and ProcessLinux with code that appropriately sets the Process::UnixSignals for the process.
This change also enables some future patches that will enable llgs to be used for local Linux debugging.
llvm-svn: 216748
This is a lightweight wrapper around a pid. It is intended to be
lightweight enough to serve as a replacement anywhere we currently
store a pid. It provides convenience methods and common process
operations.
This patch does not yet make use of HostProcess anywhere.
llvm-svn: 216607
LLDB had implemented its own DynamicLibrary class for plugin
support. LLVM has an equivalent mechanism, so this patch deletes
the duplicated code in LLDB and updates LLDB to reference the
mechanism provided by LLVM.
llvm-svn: 216606
Add entries to core_definitions and elf_arch_entries for
those variants. Select the subtype for the variant by parsing
the e_flags field of the elf header.
llvm-svn: 216541