Current implementation of parseLoopStructure interprets the latch comparison as a
comarison against `iv.next`. If the actual comparison is made against the `iv` current value
then the loop may be rejected, because this misinterpretation leads to incorrect evaluation
of the latch start value.
This patch teaches the IRCE to distinguish this kind of loops and perform the optimization
for them. Now we use `IndVarBase` variable which can be either next or current value of the
induction variable (previously we used `IndVarNext` which was always the value on next iteration).
Differential Revision: https://reviews.llvm.org/D36215
llvm-svn: 312221
Renaming as a preparation step to generalizing IRCE for comparison not only against
the next value of an indvar, but also against the current.
Differential Revision: https://reviews.llvm.org/D36509
llvm-svn: 312215
This is to fix PR34257. rL309059 takes an early return when FindLIVLoopCondition
fails to find a loop invariant condition. This is wrong and it will disable loop
unswitch for select. The patch fixes the bug.
Differential Revision: https://reviews.llvm.org/D36985
llvm-svn: 312045
When LSR processes code like
int accumulator = 0;
for (int i = 0; i < N; i++) {
accummulator += i;
use((double) accummulator);
}
It may decide to replace integer `accumulator` with a double Shadow IV to get rid
of casts. The problem with that is that the `accumulator`'s value may overflow.
Starting from this moment, the behavior of integer and double accumulators
will differ.
This patch strenghtens up the conditions of Shadow IV mechanism applicability.
We only allow it for IVs that are proved to be `AddRec`s with `nsw`/`nuw` flag.
Differential Revision: https://reviews.llvm.org/D37209
llvm-svn: 311986
Summary:
SimplifyIndVar may introduce zext instructions to widen arguments of the
loop exit check. They should not prevent us from splitting the loop at
the induction variable, but maybe the check should be more conservative,
e.g. making sure it only extends arguments used by a comparison?
Reviewers: karthikthecool, mcrosier, mzolotukhin
Reviewed By: mcrosier
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D34879
llvm-svn: 311783
Summary:
When reassociating an expression, do not drop the instruction's
original debug location in case the replacement location is
missing.
The debug location must at least not be dropped for inlinable
callsites of debug-info-bearing functions in debug-info-bearing
functions. Failing to do so would result in an "inlinable function "
"call in a function with debug info must have a !dbg location"
error in the verifier.
As preserving the original debug location is not expected
to result in overly jumpy debug line information, it is
preserved for all other cases too.
This fixes PR34231:
https://bugs.llvm.org/show_bug.cgi?id=34231
Original patch by David Stenberg
Reviewers: davide, craig.topper, mcrosier, dblaikie, aprantl
Reviewed By: davide, aprantl
Subscribers: aprantl
Differential Revision: https://reviews.llvm.org/D36865
llvm-svn: 311642
The lowering isn't really an optimization, so optnone shouldn't make a
difference. ARM relies on the pass running when using "-mthread-model
single", because in that mode, it doesn't run AtomicExpand. See bug for
more details.
Differential Revision: https://reviews.llvm.org/D37040
llvm-svn: 311565
..if the resulting subtract will be broken up later. This can cause us to get
into an infinite loop.
x + (-5.0 * y) -> x - (5.0 * y) ; Canonicalize neg const
x - (5.0 * y) -> x + (0 - (5.0 * y)) ; Break up subtract
x + (0 - (5.0 * y)) -> x + (-5.0 * y) ; Replace 0-X with X*-1.
PR34078
llvm-svn: 311554
Summary:
This patch teaches ADCE to preserve both DominatorTrees and PostDominatorTrees.
This is reapplies the original patch r311057 that was reverted in r311381.
The previous version wasn't using the batch update api for updating dominators,
which in vary rare cases caused assertion failures.
This also fixes PR34258.
Reviewers: dberlin, chandlerc, sanjoy, davide, grosser, brzycki
Reviewed By: davide
Subscribers: grandinj, zhendongsu, llvm-commits, david2050
Differential Revision: https://reviews.llvm.org/D35869
llvm-svn: 311467
Clamp function was too optimistic when choosing signed or unsigned min/max function for calculations.
In fact, `!IsSignedPredicate` guarantees us that `Smallest` and `Greatest` can be compared safely using unsigned
predicates, but we did not check this for `S` which can in theory be negative.
This patch makes Clamp use signed min/max for cases when it fails to prove `S` being non-negative,
and it adds a test where such situation may lead to incorrect conditions calculation.
Differential Revision: https://reviews.llvm.org/D36873
llvm-svn: 311205
Summary: This patch teaches LoopRotate to use the new incremental API to update the DominatorTree.
Reviewers: dberlin, davide, grosser, sanjoy
Reviewed By: dberlin, davide
Subscribers: hiraditya, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D35581
llvm-svn: 311125
Summary:
This patch makes LoopUnswitch use new incremental API for updating dominators.
It also updates SplitCriticalEdge, as it is called in LoopUnswitch.
There doesn't seem to be any noticeable performance difference when bootstrapping clang with this patch.
Reviewers: dberlin, davide, sanjoy, grosser, chandlerc
Reviewed By: davide, grosser
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35528
llvm-svn: 311093
Summary:
This patch teaches ADCE to preserve both DominatorTrees and PostDominatorTrees.
I didn't notice any performance impact when bootstrapping clang with this patch.
The patch was originally committed in r311039 and reverted in r311049.
This revision fixes the problem with not adding a dependency on the
DominatorTreeWrapperPass for the LegacyPassManager.
Reviewers: dberlin, chandlerc, sanjoy, davide, grosser, brzycki
Reviewed By: davide
Subscribers: grandinj, zhendongsu, llvm-commits, david2050
Differential Revision: https://reviews.llvm.org/D35869
llvm-svn: 311057
Summary:
This patch teaches ADCE to preserve both DominatorTrees and PostDominatorTrees.
I didn't notice any performance impact when bootstrapping clang with this patch.
Reviewers: dberlin, chandlerc, sanjoy, davide, grosser, brzycki
Reviewed By: davide
Subscribers: grandinj, zhendongsu, llvm-commits, david2050
Differential Revision: https://reviews.llvm.org/D35869
llvm-svn: 311039
Summary:
Mark LoopDataPrefetch and AArch64FalkorHWPFFix passes as preserving
ScalarEvolution since they do not alter loop structure and should not
alter any SCEV values (though LoopDataPrefetch may introduce new
instructions that won't have cached SCEV values yet).
This can result in slight code differences, mainly w.r.t. nsw/nuw flags
on SCEVs, since these are computed somewhat lazily when a zext/sext
instruction is encountered. As a result, passes after the modified
passes may see SCEVs with more nsw/nuw flags present.
Reviewers: sanjoy, anemet
Subscribers: aemerson, rengolin, mzolotukhin, javed.absar, kristof.beyls, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D36716
llvm-svn: 311032
To clear assumptions that are potentially invalid after trivialization, we need
to walk the use/def chain. Normally, the only way to reach an instruction with
an unsized type is via an instruction that has side effects (or otherwise will
demand its input bits). That would stop the walk. However, if we have a
readnone function that returns an unsized type (e.g., void), we must avoid
asking for the demanded bits of the function call's return value. A
void-returning readnone function is always dead (and so we can stop walking the
use/def chain here), but the check is necessary to avoid asserting.
Fixes PR34211.
llvm-svn: 311014
Summary:
This patch teaches PostDominatorTree about infinite loops. It is built on top of D29705 by @dberlin which includes a very detailed motivation for this change.
What's new is that the patch also teaches the incremental updater how to deal with reverse-unreachable regions and how to properly maintain and verify tree roots. Before that, the incremental algorithm sometimes ended up preserving reverse-unreachable regions after updates that wouldn't appear in the tree if it was constructed from scratch on the same CFG.
This patch makes the following assumptions:
- A sequence of updates should produce the same tree as a recalculating it.
- Any sequence of the same updates should lead to the same tree.
- Siblings and roots are unordered.
The last two properties are essential to efficiently perform batch updates in the future.
When it comes to the first one, we can decide later that the consistency between freshly built tree and an updated one doesn't matter match, as there are many correct ways to pick roots in infinite loops, and to relax this assumption. That should enable us to recalculate postdominators less frequently.
This patch is pretty conservative when it comes to incremental updates on reverse-unreachable regions and ends up recalculating the whole tree in many cases. It should be possible to improve the performance in many cases, if we decide that it's important enough.
That being said, my experiments showed that reverse-unreachable are very rare in the IR emitted by clang when bootstrapping clang. Here are the statistics I collected by analyzing IR between passes and after each removePredecessor call:
```
# functions: 52283
# samples: 337609
# reverse unreachable BBs: 216022
# BBs: 247840796
Percent reverse-unreachable: 0.08716159869015269 %
Max(PercRevUnreachable) in a function: 87.58620689655172 %
# > 25 % samples: 471 ( 0.1395104988314885 % samples )
... in 145 ( 0.27733680163724345 % functions )
```
Most of the reverse-unreachable regions come from invalid IR where it wouldn't be possible to construct a PostDomTree anyway.
I would like to commit this patch in the next week in order to be able to complete the work that depends on it before the end of my internship, so please don't wait long to voice your concerns :).
Reviewers: dberlin, sanjoy, grosser, brzycki, davide, chandlerc, hfinkel
Reviewed By: dberlin
Subscribers: nhaehnle, javed.absar, kparzysz, uabelho, jlebar, hiraditya, llvm-commits, dberlin, david2050
Differential Revision: https://reviews.llvm.org/D35851
llvm-svn: 310940
The assert was added with r310779 and is usually correct,
but as the test shows, not always. The 'volatile' on the
load is needed to expose the faulty path because without
it, DemandedBits would return that the load is just dead
rather than not demanded, and so we wouldn't hit the
bogus assert.
Also, since the lambda is just a single-line now, get rid
of it and inline the DB.isAllOnesValue() calls.
This should fix (prevent execution of a faulty assert):
https://bugs.llvm.org/show_bug.cgi?id=34179
llvm-svn: 310842
On some targets, the penalty of executing runtime unrolling checks
and then not the unrolled loop can be significantly detrimental to
performance. This results in the need to be more conservative with
the unroll count, keeping a trip count of 2 reduces the overhead as
well as increasing the chance of the unrolled body being executed. But
being conservative leaves performance gains on the table.
This patch enables the unrolling of the remainder loop introduced by
runtime unrolling. This can help reduce the overhead of misunrolled
loops because the cost of non-taken branches is much less than the
cost of the backedge that would normally be executed in the remainder
loop. This allows larger unroll factors to be used without suffering
performance loses with smaller iteration counts.
Differential Revision: https://reviews.llvm.org/D36309
llvm-svn: 310824
This make it consistent with STATISTIC which it will often appears near.
While there move one DEBUG_COUNTER instance out of an anonymous namespace. It's already declaring a static variable so the namespace is unnecessary.
llvm-svn: 310637
isLegalAddressingMode() has recently gained the extra optional Instruction*
parameter, and therefore it can now do the job that previously only
isFoldableMemAccess() could do.
The SystemZ implementation of isLegalAddressingMode() has gained the
functionality of checking for offsets, which used to be done with
isFoldableMemAccess().
The isFoldableMemAccess() hook has been removed everywhere.
Review: Quentin Colombet, Ulrich Weigand
https://reviews.llvm.org/D35933
llvm-svn: 310463
In the recursive call to isAMCompletelyFolded(), the passed offset should be
the sum of F.BaseOffset and Fixup.Offset.
Review: Quentin Colombet.
llvm-svn: 310462
When a new phi is generated for scalarpre of an expression, the phiTranslate cache
will become stale: Before PRE, the candidate expression must not be available in a
predecessor block, and phitranslate will cache the information. After PRE, the
expression will become available in all predecessor blocks, so the related entries
in phiTranslate cache becomes stale. The patch will simply remove the stale entries
so phiTranslate can be recomputed next time.
The stale entries in phitranslate cache will not affect correctness but will cause
missing PRE opportunity for later instructions.
Differential Revision: https://reviews.llvm.org/D36124
llvm-svn: 310421
results when a loop is completely removed.
This is very hard to manifest as a visible bug. You need to arrange for
there to be a subsequent allocation of a 'Loop' object which gets the
exact same address as the one which the unroll deleted, and you need the
LoopAccessAnalysis results to be significant in the way that they're
stale. And you need a million other things to align.
But when it does, you get a deeply mysterious crash due to actually
finding a stale analysis result. This fixes the issue and tests for it
by directly checking we successfully invalidate things. I have not been
able to get *any* test case to reliably trigger this. Changes to LLVM
itself caused the only test case I ever had to cease to crash.
I've looked pretty extensively at less brittle ways of fixing this and
they are actually very, very hard to do. This is a somewhat strange and
unusual case as we have a pass which is deleting an IR unit, but is not
running within that IR unit's pass framework (which is what handles this
cleanly for the normal loop unroll). And where there isn't a definitive
way to clear *all* of the stale cache entries. And where the pass *is*
updating the core analysis that provides the IR units!
For example, we don't have any of these problems with Function analyses
because it is easy to clear out function analyses when the functions
themselves may have been deleted -- we clear an entire module's worth!
But that is too heavy of a hammer down here in the LoopAnalysisManager
layer.
A better long-term solution IMO is to require that AnalysisManager's
make their keys durable to this kind of thing. Specifically, when
caching an analysis for one IR unit that is conceptually "owned" by
a higher level IR unit, the AnalysisManager should incorporate this into
its data structures so that we can reliably clear these results without
having to teach each and every pass to do so manually as we do here. But
that is a change for another day as it will be a fairly invasive change
to the AnalysisManager infrastructure. Until then, this fortunately
seems to be quite rare.
llvm-svn: 310333
The root cause of reverting was fixed - PR33514.
Summary:
The patch makes instruction count the highest priority for
LSR solution for X86 (previously registers had highest priority).
Reviewers: qcolombet
Differential Revision: http://reviews.llvm.org/D30562
From: Evgeny Stupachenko <evstupac@gmail.com>
<evgeny.v.stupachenko@intel.com>
llvm-svn: 310289
While here, rename `i` to `Rank` as the latter is more
self-explanatory (and this code also uses `I` two lines below to
identify an Instruction).
llvm-svn: 310238
Summary:
The bug was uncovered after fix of PR23384 (part 3 of 3).
The patch restricts pointer multiplication in SCEV computaion for ICmpZero.
Reviewers: qcolombet
Differential Revision: http://reviews.llvm.org/D36170
From: Evgeny Stupachenko <evstupac@gmail.com>
<evgeny.v.stupachenko@intel.com>
llvm-svn: 310092
Summary:
This fixes PR31777.
If both stores' values are ConstantInt, we merge the two stores
(shifting the smaller store appropriately) and replace the earlier (and
larger) store with an updated constant.
In the future we should also support vectors of integers. And maybe
float/double if we can.
Reviewers: hfinkel, junbuml, jfb, RKSimon, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30703
llvm-svn: 310055
Summary:
Detect when the working set size of a profiled application is huge,
by comparing the number of counts required to reach the hot percentile
in the profile summary to a large threshold*.
When the working set size is determined to be huge, disable peeling
to avoid bloating the working set further.
*Note that the selected threshold (15K) is significantly larger than the
largest working set value in SPEC cpu2006 (which is gcc at around 11K).
Reviewers: davidxl
Subscribers: mehdi_amini, mzolotukhin, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D36288
llvm-svn: 310005
Summary:
Peeling should not occur during the full unrolling invocation early
in the pipeline, but rather later with partial and runtime loop
unrolling. The later loop unrolling invocation will also eventually
utilize profile summary and branch frequency information, which
we would like to use to control peeling. And for ThinLTO we want
to delay peeling until the backend (post thin link) phase, just as
we do for most types of unrolling.
Ensure peeling doesn't occur during the full unrolling invocation
by adding a parameter to the shared implementation function, similar
to the way partial and runtime loop unrolling are disabled.
Performance results for ThinLTO suggest this has a neutral to positive
effect on some internal benchmarks.
Reviewers: chandlerc, davidxl
Subscribers: mzolotukhin, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D36258
llvm-svn: 309966
Summary:
This is largely NFC*, in preparation for utilizing ProfileSummaryInfo
and BranchFrequencyInfo analyses. In this patch I am only doing the
splitting for the New PM, but I can do the same for the legacy PM as
a follow-on if this looks good.
*Not NFC since for partial unrolling we lose the updates done to the
loop traversal (adding new sibling and child loops) - according to
Chandler this is not very useful for partial unrolling, but it also
means that the debugging flag -unroll-revisit-child-loops no longer
works for partial unrolling.
Reviewers: chandlerc
Subscribers: mehdi_amini, mzolotukhin, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D36157
llvm-svn: 309886
Summary:
This patch makes LoopDeletion use the incremental DominatorTree API.
We modify LoopDeletion to perform the deletion in 5 steps:
1. Create a new dummy edge from the preheader to the exit, by adding a conditional branch.
2. Inform the DomTree about the new edge.
3. Remove the conditional branch and replace it with an unconditional edge to the exit. This removes the edge to the loop header, making it unreachable.
4. Inform the DomTree about the deleted edge.
5. Remove the unreachable block from the function.
Creating the dummy conditional branch is necessary to perform incremental DomTree update.
We should consider using the batch updater when it's ready.
Reviewers: dberlin, davide, grosser, sanjoy
Reviewed By: dberlin, grosser
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35391
llvm-svn: 309850
Summary:
Adding part of the changes in D30369 (needed to make progress):
Current patch updates AliasAnalysis and MemoryLocation, but does _not_ clean up MemorySSA.
Original summary from D30369, by dberlin:
Currently, we have instructions which affect memory but have no memory
location. If you call, for example, MemoryLocation::get on a fence,
it asserts. This means things specifically have to avoid that. It
also means we end up with a copy of each API, one taking a memory
location, one not.
This starts to fix that.
We add MemoryLocation::getOrNone as a new call, and reimplement the
old asserting version in terms of it.
We make MemoryLocation optional in the (Instruction, MemoryLocation)
version of getModRefInfo, and kill the old one argument version in
favor of passing None (it had one caller). Now both can handle fences
because you can just use MemoryLocation::getOrNone on an instruction
and it will return a correct answer.
We use all this to clean up part of MemorySSA that had to handle this difference.
Note that literally every actual getModRefInfo interface we have could be made private and replaced with:
getModRefInfo(Instruction, Optional<MemoryLocation>)
and
getModRefInfo(Instruction, Optional<MemoryLocation>, Instruction, Optional<MemoryLocation>)
and delegating to the right ones, if we wanted to.
I have not attempted to do this yet.
Reviewers: dberlin, davide, dblaikie
Subscribers: sanjoy, hfinkel, chandlerc, llvm-commits
Differential Revision: https://reviews.llvm.org/D35441
llvm-svn: 309641
Summary:
Since r293359, most dump() function are only defined when
`!defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)` holds. print() functions
only used by dump() functions are now unused in release builds,
generating lots of warnings. This patch only defines some print()
functions if they are used.
Reviewers: MatzeB
Reviewed By: MatzeB
Subscribers: arsenm, mzolotukhin, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D35949
llvm-svn: 309553
Summary:
Without any information about the called function, we cannot be sure
that it is safe to interchange loops which contain function calls. For
example there could be dependences that prevent interchanging between
accesses in the called function and the loops. Even functions without any
parameters could cause problems, as they could access memory using
global pointers.
For now, I think it is only safe to interchange loops with calls marked
as readnone.
With this patch, the LLVM test suite passes with `-O3 -mllvm
-enable-loopinterchange` and LoopInterchangeProfitability::isProfitable
returning true for all loops. check-llvm and check-clang also pass when
bootstrapped in a similar fashion, although only 3 loops got
interchanged.
Reviewers: karthikthecool, blitz.opensource, hfinkel, mcrosier, mkuper
Reviewed By: mcrosier
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35489
llvm-svn: 309547
Recommit after workaround the bug PR31652.
Three bugs fixed in previous recommits: The first one is to use CurrentBlock
instead of PREInstr's Parent as param of performScalarPREInsertion because
the Parent of a clone instruction may be uninitialized. The second one is stop
PRE when CurrentBlock to its predecessor is a backedge and an operand of CurInst
is defined inside of CurrentBlock. The same value defined inside of loop in last
iteration can not be regarded as available. The third one is an out-of-bound
array access in a flipped if guard.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
Differential Revision: https://reviews.llvm.org/D32252
llvm-svn: 309397
JumpThreading claims to preserve LVI, but it doesn't preserve
the analyses which LVI holds a reference to (e.g. the Dominator).
In the current pass manager infrastructure, after JT runs, the
PM frees these analyses (including DominatorTree) but preserves
LVI.
CorrelatedValuePropagation runs immediately after and queries
a corrupted domtree, causing weird miscompiles.
This commit disables the preservation of LVI for the time being.
Eventually, we should either move LVI to a proper dependency
tracking mechanism (i.e. an analyses shouldn't hold references
to other analyses and compute them on demand if needed), or
we should teach all the passes preserving LVI to preserve the
analyses LVI depends on.
The new pass manager has a mechanism to invalidate LVI in case
one of the analyses it depends on becomes invalid, so this problem
shouldn't exist (at least not in this immediate form), but handling
of analyses holding references is still a very delicate subject.
Fixes PR33917 (and rustc).
llvm-svn: 309355
Summary:
It is possible for some passes to materialize a call to a libcall (ex: ldexp, exp2, etc),
but these passes will not mark the call as a gc-leaf-function. All libcalls are
actually gc-leaf-functions, so we change llvm::callsGCLeafFunction() to tell us that
available libcalls are equivalent to gc-leaf-function calls.
Reviewers: sanjoy, anna, reames
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35840
llvm-svn: 309291
This is a workaround for the bug described in PR31652 and
http://lists.llvm.org/pipermail/llvm-dev/2017-July/115497.html. The temporary
solution is to add a function EqualityPropUnSafe. In EqualityPropUnSafe, for
some simple patterns we can know the equality comparison may contains undef,
so we regard such comparison as unsafe and will not do loop-unswitching for
them. We also need to disable the select simplification when one of select
operand is undef and its result feeds into equality comparison.
The patch cannot clear the safety issue caused by the bug, but it can suppress
the issue from happening to some extent.
Differential Revision: https://reviews.llvm.org/D35811
llvm-svn: 309059
it when safe.
Very often the BE count is the trip count minus one, and the plus one
here should fold with that minus one. But because the BE count might in
theory be UINT_MAX or some such, adding one before we extend could in
some cases wrap to zero and break when we scale things.
This patch checks to see if it would be safe to add one because the
specific case that would cause this is guarded for prior to entering the
preheader. This should handle essentially all of the common loop idioms
coming out of C/C++ code once canonicalized by LLVM.
Before this patch, both forms of loop in the added test cases ended up
subtracting one from the size, extending it, scaling it up by 8 and then
adding 8 back onto it. This is really silly, and it turns out made it
all the way into generated code very often, so this is a surprisingly
important cleanup to do.
Many thanks to Sanjoy for showing me how to do this with SCEV.
Differential Revision: https://reviews.llvm.org/D35758
llvm-svn: 308968
Summary:
The remaining non range-based for loops do not iterate over full ranges,
so leave them as they are.
Reviewers: karthikthecool, blitz.opensource, mcrosier, mkuper, aemerson
Reviewed By: aemerson
Subscribers: aemerson, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35777
llvm-svn: 308872
This patch makes LSR generate better code for SystemZ in the cases of memory
intrinsics, Load->Store pairs or comparison of immediate with memory.
In order to achieve this, the following common code changes were made:
* New TTI hook: LSRWithInstrQueries(), which defaults to false. Controls if
LSR should do instruction-based addressing evaluations by calling
isLegalAddressingMode() with the Instruction pointers.
* In LoopStrengthReduce: handle address operands of memset, memmove and memcpy
as address uses, and call isFoldableMemAccessOffset() for any LSRUse::Address,
not just loads or stores.
SystemZ changes:
* isLSRCostLess() implemented with Insns first, and without ImmCost.
* New function supportedAddressingMode() that is a helper for TTI methods
looking at Instructions passed via pointers.
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D35262https://reviews.llvm.org/D35049
llvm-svn: 308729
Large CFGs can cause us to blow up the stack because we would have a
recursive step for each basic block in a region.
Instead, create a worklist and iterate it. This limits the stack usage
to something more manageable.
Differential Revision: https://reviews.llvm.org/D35609
llvm-svn: 308582
Summary:
When simplifying unconditional branches from empty blocks, we pre-test if the
BB belongs to a set of loop headers and keep the block to prevent passes from
destroying canonical loop structure. However, the current algorithm fails if
the destination of the branch is a loop header. Especially when such a loop's
latch block is folded into loop header it results in additional backedges and
LoopSimplify turns it into a nested loop which prevent later optimizations
from being applied (e.g., loop unrolling and loop interleaving).
This patch augments the existing algorithm by further checking if the
destination of the branch belongs to a set of loop headers and defer
eliminating it if yes to LateSimplifyCFG.
Fixes PR33605: https://bugs.llvm.org/show_bug.cgi?id=33605
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: efriedma
Subscribers: ashutosh.nema, gberry, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D35411
llvm-svn: 308422
Summary: Currently, when GVN creates a load and when InstCombine creates a new store for unreachable Load, the DebugLoc info gets lost.
Reviewers: dberlin, davide, aprantl
Reviewed By: aprantl
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D34639
llvm-svn: 308404
In some particular cases eq/ne conditions can be turned into equivalent
slt/sgt conditions. This patch teaches parseLoopStructure to handle some
of these cases.
Differential Revision: https://reviews.llvm.org/D35010
llvm-svn: 308264
Summary:
When checking for memory dependencies between calls using MemorySSA,
handle cases where the calls have no MemoryAccess associated with them
because the AA analysis being used has determined that the call does not
read/write memory.
Fixes PR33756
Reviewers: dberlin, davide
Subscribers: mcrosier, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D35317
llvm-svn: 308051
Add the following pattern to TryToUnfoldSelectInCurrBB()
bb:
%p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
%c = cmp %p, 0
%s = select %c, trueval, falseval
The Select in the above pattern will be unfolded and then jump-threaded. The
current implementation does not allow CMP in the middle of PHI and Select.
Differential Revision: https://reviews.llvm.org/D34762
llvm-svn: 308050
When iterating through loop
for (int i = INT_MAX; i > 0; i--)
We fail to generate the pre-loop for it. It happens because we use the
overflown value in a comparison predicate when identifying whether or not
we need it.
In old logic, we used SLE predicate against Greatest value which exceeds all
seen values of the IV and might be overflown. Now we use the GreatestSeen
value of this IV with SLT predicate.
Also added a test that ensures that a pre-loop is generated for such loops.
Differential Revision: https://reviews.llvm.org/D35347
llvm-svn: 308001
Summary:
LoopRotate manually updates the DoomTree by iterating over all predecessors of a basic block and computing the Nearest Common Dominator.
When a predecessor happens to be unreachable, `DT.findNearestCommonDominator` returns nullptr.
This patch teaches LoopRotate to handle this case and fixes [[ https://bugs.llvm.org/show_bug.cgi?id=33701 | PR33701 ]].
In the future, LoopRotate should be taught to use the new incremental API for updating the DomTree.
Reviewers: dberlin, davide, uabelho, grosser
Subscribers: efriedma, mzolotukhin
Differential Revision: https://reviews.llvm.org/D35074
llvm-svn: 307828
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
This is fine as nothing in the code relies on leader and memory
leader being the same for a given congruency class. Ack'ed by
Dan.
Fixes PR33720.
llvm-svn: 307699
Summary:
As metioned in https://reviews.llvm.org/D34576, checkings in
`collectConstantCandidates` can be replaced by using
`llvm::canReplaceOperandWithVariable`.
The only special case is that `collectConstantCandidates` return false for
all `IntrinsicInst` but it is safe for us to collect constant candidates from
`IntrinsicInst`.
Reviewers: pirama, efriedma, srhines
Reviewed By: efriedma
Subscribers: llvm-commits, javed.absar
Differential Revision: https://reviews.llvm.org/D34921
llvm-svn: 307587
InferAddressSpaces does not check address space in collectFlatAddressExpressions,
which causes values with non flat address space put into Postorder and causes
assertion in cloneValueWithNewAddressSpace.
This patch fixes assertion in OpenCL 2.0 conformance test generic_address_space
subtest for amdgcn target.
Differential Revision: https://reviews.llvm.org/D34991
llvm-svn: 307349
Using profile information to guide consthoisting is generally helpful for
performance, so the patch turns it on by default. No compile time or perf
regression were found using spec2000 and spec2006 on x86. Some significant
improvement (>20%) was seen on internal benchmarks.
Differential Revision: https://reviews.llvm.org/D35063
llvm-svn: 307338
The patch is to adjust the strategy of frequency based consthoisting:
Previously when the candidate block has the same frequency with the existing
blocks containing a const, it will not hoist the const to the candidate block.
For that case, now we change the strategy to hoist the const if only existing
blocks have more than one block member. This is helpful for reducing code size.
Differential Revision: https://reviews.llvm.org/D35084
llvm-svn: 307328
Going through the Constant methods requires redetermining that the Constant is a ConstantInt and then calling isZero/isOne/isMinusOne.
llvm-svn: 307292
When the formulae search space is huge, LSR uses a series of heuristic to keep
pruning the search space until the number of possible solutions are within
certain limit.
The big hammer of the series of heuristics is NarrowSearchSpaceByPickingWinnerRegs,
which picks the register which is used by the most LSRUses and deletes the other
formulae which don't use the register. This is a effective way to prune the search
space, but quite often not a good way to keep the best solution. We saw cases before
that the heuristic pruned the best formula candidate out of search space.
To relieve the problem, we introduce a new heuristic called
NarrowSearchSpaceByFilterFormulaWithSameScaledReg. The basic idea is in order to
reduce the search space while keeping the best formula, we want to keep as many
formulae with different Scale and ScaledReg as possible. That is because the central
idea of LSR is to choose a group of loop induction variables and use those induction
variables to represent LSRUses. An induction variable candidate is often represented
by the Scale and ScaledReg in a formula. If we have more formulae with different
ScaledReg and Scale to choose, we have better opportunity to find the best solution.
That is why we believe pruning search space by only keeping the best formula with the
same Scale and ScaledReg should be more effective than PickingWinnerReg. And we use
two criteria to choose the best formula with the same Scale and ScaledReg. The first
criteria is to select the formula using less non shared registers, and the second
criteria is to select the formula with less cost got from RateFormula. The patch
implements the heuristic before NarrowSearchSpaceByPickingWinnerRegs, which is the
last resort.
Testing shows we get 1.8% and 2% on two internal benchmarks on x86. llvm nightly
testsuite performance is neutral. We also tried lsr-exp-narrow and it didn't help
on the two improved internal cases we saw.
Differential Revision: https://reviews.llvm.org/D34583
llvm-svn: 307269
Summary: This makes it easier to find out which limitation prevented this pass from doing its work.
Reviewers: karthikthecool, mzolotukhin, efriedma, mcrosier
Reviewed By: mcrosier
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D34940
llvm-svn: 307035
This reverts commit r306313. This breaks selfhost at -O3 and PR33652.
Let me know if you need additional information on reproducing the issue.
llvm-svn: 307021
Summary:
Indices for GEPs that index into a struct type should always be
constants. This added more checks in `collectConstantCandidates:` which make
sure constants for GEP pointer type are not hoisted.
This fixed Bug https://bugs.llvm.org/show_bug.cgi?id=33538
Reviewers: ributzka, rnk
Reviewed By: ributzka
Subscribers: efriedma, llvm-commits, srhines, javed.absar, pirama
Differential Revision: https://reviews.llvm.org/D34576
llvm-svn: 306704
A slightly more efficient way to get constant, we avoid resolving in getSCEV and excessive
invocations, and we don't create a ConstantInt if 'true' branch is taken.
Differential Revision: https://reviews.llvm.org/D34672
llvm-svn: 306503
SROA assumes alloca address space is 0, which causes assertion. This patch fixes that.
Differential Revision: https://reviews.llvm.org/D34104
llvm-svn: 306440
This is based heavily on the work done ni D34285. I mostly wanted to do
test cleanup for the author to save them some time, but I had a really
hard time understanding why it was so hard to write better test cases
for these issues.
The problem is that because SROA does a second rewrite of the loads and
because we *don't* propagate !nonnull for non-pointer loads, we first
introduced invalid !nonnull metadata and then stripped it back off just
in time to avoid most ways of this PR manifesting. Moving to the more
careful utility only fixes this by changing the predicate to look at the
new load's type rather than the target type. However, that *does* fix
the bug, and the utility is much nicer including adding range metadata
to model the nonnull property after a conversion to an integer.
However, we have bigger problems because we don't actually propagate
*range* metadata, and the utility to do this extracted from instcombine
isn't really in good shape to do this currently. It *only* handles the
case of copying range metadata from an integer load to a pointer load.
It doesn't even handle the trivial cases of propagating from one integer
load to another when they are the same width! This utility will need to
be beefed up prior to using in this location to get the metadata to
fully survive.
And even then, we need to go and teach things to turn the range metadata
into an assume the way we do with nonnull so that when we *promote* an
integer we don't lose the information.
All of this will require a new test case that looks kind-of like
`preserve-nonnull.ll` does here but focuses on range metadata. It will
also likely require more testing because it needs to correctly handle
changes to the integer width, especially as SROA actively tries to
change the integer width!
Last but not least, I'm a little worried about hooking the range
metadata up here because the instcombine logic for converting from
a range metadata *to* a nonnull metadata node seems broken in the face
of non-zero address spaces where null is not mapped to the integer `0`.
So that probably needs to get fixed with test cases both in SROA and in
instcombine to cover it.
But this *does* extract the core PR fix from D34285 of preventing the
!nonnull metadata from being propagated in a broken state just long
enough to feed into promotion and crash value tracking.
On D34285 there is some discussion of zero-extend handling because it
isn't necessary. First, the new load size covers all of the non-undef
(ie, possibly initialized) bits. This may even extend past the original
alloca if loading those bits could produce valid data. The only way its
valid for us to zero-extend an integer load in SROA is if the original
code had a zero extend or those bits were undef. And we get to assume
things like undef *never* satifies nonnull, so non undef bits can
participate here. No need to special case the zero-extend handling, it
just falls out correctly.
The original credit goes to Ariel Ben-Yehuda! I'm mostly landing this to
save a few rounds of trivial edits fixing style issues and test case
formulation.
Differental Revision: D34285
llvm-svn: 306379
Summary:
EraseInst didn't report that it made IR changes through MadeChange.
It is essential that changes to the IR are reported correctly,
since for example ReassociatePass::run() will indicate that all
analyses are preserved otherwise.
And the CGPassManager determines if the CallGraph is up-to-date
based on status from InstructionCombiningPass::runOnFunction().
Reviewers: craig.topper, rnk, davide
Reviewed By: rnk, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34616
llvm-svn: 306368
The recommit fixes three bugs: The first one is to use CurrentBlock instead of
PREInstr's Parent as param of performScalarPREInsertion because the Parent
of a clone instruction may be uninitialized. The second one is stop PRE when
CurrentBlock to its predecessor is a backedge and an operand of CurInst is
defined inside of CurrentBlock. The same value defined inside of loop in last
iteration can not be regarded as available. The third one is an out-of-bound
array access in a flipped if guard.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
llvm-svn: 306313
Recommit NFC patch (rL306157) where I missed incrementing the basic block iterator,
which caused loop deletion tests to hang due to infinite loop.
Had reverted it in rL306162.
rL306157 commit message:
Currently, the implementation of delete dead loops has a special case
when the loop being deleted is never executed. This special case
(updating of exit block's incoming values for phis) can be
run as a prepass for non-executable loops before performing
the actual deletion.
llvm-svn: 306254
This reverts commit r306157.
It caused some timeouts in clang tests. Perhaps unreachable loops have
far too many phi nodes.
Reverting and investigating.
llvm-svn: 306162
Currently, the implementation of delete dead loops has a special case
when the loop being deleted is never executed. This special case
(updating of exit block's incoming values for phis) can be
run as a prepass for non-executable loops before performing
the actual deletion.
llvm-svn: 306157
Currently JumpThreading can use LazyValueInfo to analyze an 'and' or 'or' of compare if the compare is fed by a livein of a basic block. This can be used to to prove the condition can't be met for some predecessor and the jump from that predecessor can be moved to the false path of the condition.
But if the compare is something that InstCombine turns into an add and a single compare, it can't be analyzed because the livein is now an input to the add and not the compare.
This patch adds a new method to LVI to get a ConstantRange on an edge. Then we teach jump threading to detect the add livein feeding a compare and to get the ConstantRange and propagate it.
Differential Revision: https://reviews.llvm.org/D33262
llvm-svn: 306085
Summary:
Currently, we incorrectly update exit blocks of loops when there are multiple
edges from a single exiting block to the exit block. This can happen when we
have switches as the terminator of the exiting blocks.
The fix here is to correctly update the phi nodes in the exit block, and remove
all incoming values *except* for one which is from the preheader.
Note: Currently, this error can manifest only while deleting non-executed loops. However, it
is possible to trigger this error in invariant loops, once we enhance the logic
around the exit conditions for the loop check.
Reviewers: chandlerc, dberlin, sanjoy, efriedma
Reviewed by: efriedma
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D34516
llvm-svn: 306048
We weren't actually checking for duplicated stores, as the condition
was always actually false. This was found by Coverity, and I have
no clue how to trigger this in real-world code (although I
tried for a bit).
llvm-svn: 305867
This seems to be interacting badly with ASan somehow, causing false reports of
heap-buffer overflows: PR33514.
> Summary:
> The patch makes instruction count the highest priority for
> LSR solution for X86 (previously registers had highest priority).
>
> Reviewers: qcolombet
>
> Differential Revision: http://reviews.llvm.org/D30562
>
> From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 305720
Summary:
Currently we don't try to do anything with vector xors.
This patch adds support for removing duplicate pairs from a chain of vector xors as its pretty easy to support. We still dont' try to combine the xors with and/ors, but I might try that in a future patch.
Reviewers: mcrosier, davide, resistor
Reviewed By: mcrosier
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34338
llvm-svn: 305704
Summary:
After a single predecessor is merged into a basic block, we need to invalidate
the LVI information for the new merged block, when LVI is not provably true for
all of instructions in the new block.
The test cases added show the correct LVI information using the LVI printer
pass.
Reviewers: reames, dberlin, davide, sanjoy
Reviewed by: dberlin, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34108
llvm-svn: 305699
Summary: use AA to tell whether a load can be moved before a call that writes to memory.
Reviewers: dberlin, davide, sanjoy, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D34115
llvm-svn: 305698
The recommit fixes two bugs: The first one is to use CurrentBlock instead of
PREInstr's Parent as param of performScalarPREInsertion because the Parent
of a clone instruction may be uninitialized. The second one is stop PRE when
CurrentBlock to its predecessor is a backedge and an operand of CurInst is
defined inside of CurrentBlock. The same value defined inside of loop in last
iteration can not be regarded as available.
Right now scalarpre doesn't have phi-translate support, so it will miss some
simple pre opportunities. Like the following testcase, current scalarpre cannot
recognize the last "a * b" is fully redundent because a and b used by the last
"a * b" expr are both defined by phis.
long a[100], b[100], g1, g2, g3;
__attribute__((pure)) long goo();
void foo(long a, long b, long c, long d) {
g1 = a * b;
if (__builtin_expect(g2 > 3, 0)) {
a = c;
b = d;
g2 = a * b;
}
g3 = a * b; // fully redundant.
}
The patch adds phi-translate support in scalarpre. This is only a temporary
solution before the newpre based on newgvn is available.
Differential Revision: https://reviews.llvm.org/D32252
llvm-svn: 305578
Summary:
Background: http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html
This change is to alter the prototype for the atomic memcpy intrinsic. The prototype itself is being changed to more closely resemble the semantics and parameters of the llvm.memcpy intrinsic -- to ease later combination of the llvm.memcpy and atomic memcpy intrinsics. Furthermore, the name of the atomic memcpy intrinsic is being changed to make it clear that it is not a generic atomic memcpy, but specifically a memcpy is unordered atomic.
Reviewers: reames, sanjoy, efriedma
Reviewed By: reames
Subscribers: mzolotukhin, anna, llvm-commits, skatkov
Differential Revision: https://reviews.llvm.org/D33240
llvm-svn: 305558