Summary: Among other things, this allows -print-after-all/-print-before-all to
dump IR around this pass.
IIRC, this pass is off by default, but it's still helpful when debugging.
llvm-svn: 244056
Summary: Among other things, this allows -print-after-all/-print-before-all to
dump IR around this pass.
This is the AArch64 version of r243052.
llvm-svn: 244041
return StringSwitch<int>(Flags)
.Case("g", 0x1)
.Case("nzcvq", 0x2)
.Case("nzcvqg", 0x3)
.Default(-1);
...
// The _g and _nzcvqg versions are only valid if the DSP extension is
// available.
if (!Subtarget->hasThumb2DSP() && (Mask & 0x2))
return -1;
ARMARM confirms that the comment is right, and the code was wrong.
llvm-svn: 244029
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).
Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.
This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.
Differential Revision: http://reviews.llvm.org/D11734
llvm-svn: 243994
In the commentary for D11660, I wasn't sure if it was alright to create new
integer machine instructions without also creating the implicit EFLAGS operand.
From what I can see, the implicit operand is always created by the MachineInstrBuilder
based on the instruction type, so we don't have to do that explicitly. However, in
reviewing the debug output, I noticed that the operand was not marked as 'dead'.
The machine combiner should do that to preserve future optimization opportunities
that may be checking for that dead EFLAGS operand themselves.
Differential Revision: http://reviews.llvm.org/D11696
llvm-svn: 243990
Summary:
Previously, we would check whether the target is supported or not, only in
fastSelectInstruction(). This means that 64-bit targets could use FastISel too.
We fix this by checking every overridden method of the FastISel class and
by falling back to SelectionDAG if the target isn't supported. This change
should have been committed along with r243638, but somehow I missed it.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11755
llvm-svn: 243986
It introduced two regressions on 64-bit big-endian targets running under N32
(MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4, and
MultiSource/Applications/kimwitu++/kc) The issue is that on 64-bit targets
comparisons such as BEQ compare the whole GPR64 but incorrectly tell the
instruction selector that they operate on GPR32's. This leads to the
elimination of i32->i64 extensions that are actually required by
comparisons to work correctly.
There's currently a patch under review that fixes this problem.
llvm-svn: 243984
This adds the software division routines for the Windows RTABI. These are not
expected to be used often though as most modern Windows ARM capable targets
support hardware division. In the case that the target CPU doesnt support
hardware division, this will be the fallback.
llvm-svn: 243952
Some are named "FP", others "SD", others still "FP*SD".
Rename all this to just use "FP", which, except for conversions
(which don't use this format naming scheme), implies "SD" anyway.
llvm-svn: 243936
It's already in SysRegMappings, no need to also have it in MSRMappings:
the latter is only used if we didn't find a match in the former.
llvm-svn: 243933
There's a bunch of code in LowerFCOPYSIGN that does smart lowering, and
is actually already vector-aware; let's use it instead of scalarizing!
The only interesting change is that for v2f32, we previously always used
use v4i32 as the integer vector type.
Use v2i32 instead, and mark FCOPYSIGN as Custom.
llvm-svn: 243926
This is necessary for WatchOS support, where the compact unwind format assumes
this kind of layout. For now we only want this on Swift-like CPUs though, where
it's been the Xcode behaviour for ages. Also, since it can expand the prologue
we don't want it at -Oz.
llvm-svn: 243884
Enabling merging of extern globals appears to be generally either beneficial or
harmless. On some benchmarks suites (on Cortex-M4F, Cortex-A9, and Cortex-A57)
it gives improvements in the 1-5% range, but in the rest the overall effect is
zero.
Differential Revision: http://reviews.llvm.org/D10966
llvm-svn: 243874
In http://reviews.llvm.org/rL215382, IT forming was made more conservative under
the belief that a flag-setting instruction was unpredictable inside an IT block on ARMv6M.
But actually, ARMv6M doesn't even support IT blocks so that's impossible. In the ARMARM for
v7M, v7AR and v8AR it states that the semantics of such an instruction changes inside an
IT block - it doesn't set the flags. So actually it is fine to use one inside an IT block
as long as the flags register is dead afterwards.
This gives significant performance improvements in a variety of MPEG based workloads.
Differential revision: http://reviews.llvm.org/D11680
llvm-svn: 243869
Summary: This currently sets the shift amount RHS to the same type as the LHS, and assumes that the LHS is a simple type. This isn't currently the case e.g. with weird integers sizes, but will eventually be true and will assert if not. That's what you get for having an experimental backend: break it and you get to keep both pieces. Most backends either set the RHS to MVT::i32 or MVT::i64, but WebAssembly is a virtual ISA and tries to have regular-looking binary operations where both operands are the same type (even if a 64-bit RHS shifter is slightly silly, hey it's free!).
Subscribers: llvm-commits, sunfish, jfb
Differential Revision: http://reviews.llvm.org/D11715
llvm-svn: 243860
Remove some unnecessary explicit special members in Hexagon that, once
removed, allow the other implicit special members to be used without
depending on deprecated features.
llvm-svn: 243825
Summary: Also test 64-bit integers, except shifts for now which are broken because isel dislikes the 32-bit truncate that precedes them.
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11699
llvm-svn: 243822
Various targets use std::swap on specific MCAsmOperands (ARM and
possibly Hexagon as well). It might be helpful to mark those subclasses
as final, to ensure that the availability of move/copy operations can't
lead to slicing. (same sort of requirements as the non-vitual dtor -
protected or a final class)
llvm-svn: 243820
This commit fixes a bug in the class 'SIInstrInfo' where the implicit register
machine operands were added to a machine instruction in an incorrect order -
the implicit uses were added before the implicit defs.
I found this bug while working on moving the implicit register operand
verification code from the MIR parser to the machine verifier.
This commit also makes the method 'addImplicitDefUseOperands' in the machine
instruction class public so that it can be reused in the 'SIInstrInfo' class.
Reviewers: Matt Arsenault
Differential Revision: http://reviews.llvm.org/D11689
llvm-svn: 243799
Summary:
For example, in
struct S {
int *x;
int *y;
};
__global__ void foo(S s) {
int *b = s.y;
// use b
}
"b" is guaranteed to point to global. NVPTX should emit ld.global/st.global for
accessing "b".
Reviewers: jholewinski
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11505
llvm-svn: 243790
Summary:
Use -1 as numoperands for the return SDTypeProfile, denoting that return is variadic. Note that the patterns in InstrControl.td still need to match the inputs, so this ins't an "anything goes" variadic on ret!
The next step will be to handle other local types (not just int32).
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11692
llvm-svn: 243783
Summary:
This prints assembly for int32 integer operations defined in WebAssemblyInstrInteger.td only, with major caveats:
- The operation names are currently incorrect.
- Other integer and floating-point types will be added later.
- The printer isn't factored out to handle recursive AST code yet, since it can't even handle control flow anyways.
- The assembly format isn't full s-expressions yet either, this will be added later.
- This currently disables PrologEpilogCodeInserter as well as MachineCopyPropagation becasue they don't like virtual registers, which WebAssembly likes quite a bit. This will be fixed by factoring out NVPTX's change (currently a fork of PrologEpilogCodeInserter).
Reviewers: sunfish
Subscribers: llvm-commits, jfb
Differential Revision: http://reviews.llvm.org/D11671
llvm-svn: 243763
Add i16, i32, i64 imul machine instructions to the list of reassociation
candidates.
A new bit of logic is needed to handle integer instructions: they have an
implicit EFLAGS operand, so we have to make sure it's dead in order to do
any reassociation with integer ops.
Differential Revision: http://reviews.llvm.org/D11660
llvm-svn: 243756
Summary:
Favor the extended reg patterns over the shifted reg patterns that match
only the operand shift and not the full sign/zero extend and shift.
Reviewers: jmolloy, t.p.northover
Subscribers: mcrosier, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11569
llvm-svn: 243753
For a modulo (reminder) operation,
clang -target armv7-none-linux-gnueabi generates "__modsi3"
clang -target armv7-none-eabi generates "__aeabi_idivmod"
clang -target armv7-linux-androideabi generates "__modsi3"
Android bionic libc doesn't provide a __modsi3, instead it provides a
"__aeabi_idivmod". This patch fixes the LLVM ARMISelLowering to generate
the correct call when ever there is a modulo operation.
Differential Revision: http://reviews.llvm.org/D11661
llvm-svn: 243717
Fixing MinSize attribute handling was discussed in D11363.
This is a prerequisite patch to doing that.
The handling of OptSize when lowering mem* functions was broken
on Darwin because it wants to ignore -Os for these cases, but the
existing logic also made it ignore -Oz (MinSize).
The Linux change demonstrates a widespread problem. The backend
doesn't usually recognize the MinSize attribute by itself; it
assumes that if the MinSize attribute exists, then the OptSize
attribute must also exist.
Fixing this more generally will be a follow-on patch or two.
Differential Revision: http://reviews.llvm.org/D11568
llvm-svn: 243693
I'm not sure what reasons the comment here could have
had for not setting these. Without these set, there is
an assertion hit during DWARF emission.
llvm-svn: 243661
Copy implementation of applyFixup from AArch64 with AArch64 bits
ripped out.
Tests will be included with a later commit. Several other
problems must be fixed before binary debug info emission
will work.
llvm-svn: 243660
Summary:
Replace the switch on instruction opcode with a switch on register size.
This way we don't need to update the switch statement when we add new
SMRD variants.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11601
llvm-svn: 243652
Summary:
This function is never called. isReallyTriviallyReMaterializable() is
the function that should be implemented instead.
Reviewers: arsenm
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11620
llvm-svn: 243651