Commit Graph

352 Commits

Author SHA1 Message Date
Hongtao Yu 705a4c149d [CSSPGO] Pseudo probe encoding and emission.
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s

Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections.  The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead. 

**ELF object emission**

The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.

Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication.  A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.

The format of `.pseudo_probe_desc` section looks like:

```
.section   .pseudo_probe_desc,"",@progbits
.quad   6309742469962978389  // Func GUID
.quad   4294967295           // Func Hash
.byte   9                    // Length of func name
.ascii  "_Z5funcAi"          // Func name
.quad   7102633082150537521
.quad   138828622701
.byte   12
.ascii  "_Z8funcLeafi"
.quad   446061515086924981
.quad   4294967295
.byte   9
.ascii  "_Z5funcBi"
.quad   -2016976694713209516
.quad   72617220756
.byte   7
.ascii  "_Z3fibi"
```

For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :

```
FUNCTION BODY (one for each outlined function present in the text section)
    GUID (uint64)
        GUID of the function
    NPROBES (ULEB128)
        Number of probes originating from this function.
    NUM_INLINED_FUNCTIONS (ULEB128)
        Number of callees inlined into this function, aka number of
        first-level inlinees
    PROBE RECORDS
        A list of NPROBES entries. Each entry contains:
          INDEX (ULEB128)
          TYPE (uint4)
            0 - block probe, 1 - indirect call, 2 - direct call
          ATTRIBUTE (uint3)
            reserved
          ADDRESS_TYPE (uint1)
            0 - code address, 1 - address delta
          CODE_ADDRESS (uint64 or ULEB128)
            code address or address delta, depending on ADDRESS_TYPE
    INLINED FUNCTION RECORDS
        A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
        callees.  Each record contains:
          INLINE SITE
            GUID of the inlinee (uint64)
            ID of the callsite probe (ULEB128)
          FUNCTION BODY
            A FUNCTION BODY entry describing the inlined function.
```

To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.

**Assembling**

Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.

A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.

A example assembly looks like:

```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```

With inlining turned on, the assembly may look different around %bb2 with an inlined probe:

```
# %bb.2:                                # %bb2
.pseudoprobe    837061429793323041 3 0
.pseudoprobe    6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe    837061429793323041 4 0
popq    %rax
retq
```

**Disassembling**

We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.

An example disassembly looks like:

```
00000000002011a0 <foo2>:
  2011a0: 50                    push   rax
  2011a1: 85 ff                 test   edi,edi
  [Probe]:  FUNC: foo2  Index: 1  Type: Block
  2011a3: 74 02                 je     2011a7 <foo2+0x7>
  [Probe]:  FUNC: foo2  Index: 3  Type: Block
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  [Probe]:  FUNC: foo   Index: 1  Type: Block  Inlined: @ foo2:6
  2011a5: 58                    pop    rax
  2011a6: c3                    ret
  [Probe]:  FUNC: foo2  Index: 2  Type: Block
  2011a7: bf 01 00 00 00        mov    edi,0x1
  [Probe]:  FUNC: foo2  Index: 5  Type: IndirectCall
  2011ac: ff d6                 call   rsi
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  2011ae: 58                    pop    rax
  2011af: c3                    ret
```

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D91878
2020-12-10 17:29:28 -08:00
Mitch Phillips 7ead5f5aa3 Revert "[CSSPGO] Pseudo probe encoding and emission."
This reverts commit b035513c06.

Reason: Broke the ASan buildbots:
  http://lab.llvm.org:8011/#/builders/5/builds/2269
2020-12-10 15:53:39 -08:00
Hongtao Yu b035513c06 [CSSPGO] Pseudo probe encoding and emission.
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s

Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections.  The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead. 

**ELF object emission**

The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.

Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication.  A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.

The format of `.pseudo_probe_desc` section looks like:

```
.section   .pseudo_probe_desc,"",@progbits
.quad   6309742469962978389  // Func GUID
.quad   4294967295           // Func Hash
.byte   9                    // Length of func name
.ascii  "_Z5funcAi"          // Func name
.quad   7102633082150537521
.quad   138828622701
.byte   12
.ascii  "_Z8funcLeafi"
.quad   446061515086924981
.quad   4294967295
.byte   9
.ascii  "_Z5funcBi"
.quad   -2016976694713209516
.quad   72617220756
.byte   7
.ascii  "_Z3fibi"
```

For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :

```
FUNCTION BODY (one for each outlined function present in the text section)
    GUID (uint64)
        GUID of the function
    NPROBES (ULEB128)
        Number of probes originating from this function.
    NUM_INLINED_FUNCTIONS (ULEB128)
        Number of callees inlined into this function, aka number of
        first-level inlinees
    PROBE RECORDS
        A list of NPROBES entries. Each entry contains:
          INDEX (ULEB128)
          TYPE (uint4)
            0 - block probe, 1 - indirect call, 2 - direct call
          ATTRIBUTE (uint3)
            reserved
          ADDRESS_TYPE (uint1)
            0 - code address, 1 - address delta
          CODE_ADDRESS (uint64 or ULEB128)
            code address or address delta, depending on ADDRESS_TYPE
    INLINED FUNCTION RECORDS
        A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
        callees.  Each record contains:
          INLINE SITE
            GUID of the inlinee (uint64)
            ID of the callsite probe (ULEB128)
          FUNCTION BODY
            A FUNCTION BODY entry describing the inlined function.
```

To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.

**Assembling**

Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.

A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.

A example assembly looks like:

```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```

With inlining turned on, the assembly may look different around %bb2 with an inlined probe:

```
# %bb.2:                                # %bb2
.pseudoprobe    837061429793323041 3 0
.pseudoprobe    6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe    837061429793323041 4 0
popq    %rax
retq
```

**Disassembling**

We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.

An example disassembly looks like:

```
00000000002011a0 <foo2>:
  2011a0: 50                    push   rax
  2011a1: 85 ff                 test   edi,edi
  [Probe]:  FUNC: foo2  Index: 1  Type: Block
  2011a3: 74 02                 je     2011a7 <foo2+0x7>
  [Probe]:  FUNC: foo2  Index: 3  Type: Block
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  [Probe]:  FUNC: foo   Index: 1  Type: Block  Inlined: @ foo2:6
  2011a5: 58                    pop    rax
  2011a6: c3                    ret
  [Probe]:  FUNC: foo2  Index: 2  Type: Block
  2011a7: bf 01 00 00 00        mov    edi,0x1
  [Probe]:  FUNC: foo2  Index: 5  Type: IndirectCall
  2011ac: ff d6                 call   rsi
  [Probe]:  FUNC: foo2  Index: 4  Type: Block
  2011ae: 58                    pop    rax
  2011af: c3                    ret
```

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D91878
2020-12-10 09:50:08 -08:00
Martin Storsjö 6f792041a5 Reapply "[CodeGen] [WinException] Only produce handler data at the end of the function if needed"
This reapplies 36c64af9d7 in updated
form.

Emit the xdata for each function at .seh_endproc. This keeps the
exact same output header order for most code generated by the LLVM
CodeGen layer. (Sections still change order for code built from
assembly where functions lack an explicit .seh_handlerdata
directive, and functions with chained unwind info.)

The practical effect should be that assembly output lacks
superfluous ".seh_handlerdata; .text" pairs at the end of functions
that don't handle exceptions, which allows such functions to use
the AArch64 packed unwind format again.

Differential Revision: https://reviews.llvm.org/D87448
2020-11-23 23:17:03 +02:00
Alex Richardson fb9942f876 [AsmParser] Add source location to all errors related to .cfi directives
I was trying to add .cfi_ annotations to assembly code in the FreeBSD
kernel and changed a macro that then resulted in incorrectly nested
directives. However, clang's diagnostics said the error was happening at
<unknown>:0. This addresses one of the TODOs added in D51695.

Reviewed By: MaskRay

Differential Revision: https://reviews.llvm.org/D89787
2020-11-11 17:00:07 +00:00
Eric Astor fdd23a3542 [ms] [llvm-ml] Add REAL10 support (x87 extended precision)
Add MASM support for 80-bit reals in the x87 extended precision format.

Reviewed By: thakis

Differential Revision: https://reviews.llvm.org/D87402
2020-09-29 16:58:46 -04:00
Martin Storsjö 20f7773bb4 [MC] [Win64EH] Fill in FuncletOrFuncEnd if missing
This can happen e.g. for code that declare .seh_proc/.seh_endproc
in assembly, or for code that use .seh_handlerdata (which triggers
the unwind info to be emitted before the end of the function).

The TextSection field must be made non-const to be able to use it
with Streamer.SwitchSection().

Differential Revision: https://reviews.llvm.org/D86528
2020-08-29 15:15:22 +03:00
Jian Cai c6334db577 [X86] support .nops directive
Add support of .nops on X86. This addresses llvm.org/PR45788.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D82826
2020-08-03 11:50:56 -07:00
jasonliu 6d3ae365bd [XCOFF][AIX] Give symbol an internal name when desired symbol name contains invalid character(s)
Summary:

When a desired symbol name contains invalid character that the
system assembler could not process, we need to emit .rename
directive in assembly path in order for that desired symbol name
to appear in the symbol table.

Reviewed By: hubert.reinterpretcast, DiggerLin, daltenty, Xiangling_L

Differential Revision: https://reviews.llvm.org/D82481
2020-07-06 15:49:15 +00:00
Alex Lorenz 24a1447b02 [macho] emit LC_BUILD_VERSION load command for supported OSes and platforms
This change lets LLVM use the LC_BUILD_VERSION command when building for macOS 10.14, iOS 12, tvOS 12, and watchOS 5.
Additionally, this change ensures that new platforms like Apple Silicon macOS / Mac Catalyst,
and simulators running on Apple Silicon alway use LC_BUILD_VERSION with the OS version set to the
minimum supported OS version if the deployment target version is older.

Differential Revision: https://reviews.llvm.org/D82836
2020-06-30 11:48:17 -07:00
diggerlin edd819c757 [AIX] supporting the visibility attribute for aix assembly
SUMMARY:

in the aix assembly , it do not have .hidden and .protected directive.
in current llvm. if a function or a variable which has visibility attribute, it will generate something like the .hidden or .protected , it can not recognize by aix as.
in aix assembly, the visibility attribute are support in the pseudo-op like
.extern Name [ , Visibility ]
.globl Name [, Visibility ]
.weak Name [, Visibility ]

in this patch, we implement the visibility attribute for the global variable, function or extern function .

for example.

extern __attribute__ ((visibility ("hidden"))) int
  bar(int* ip);
__attribute__ ((visibility ("hidden"))) int b = 0;
__attribute__ ((visibility ("hidden"))) int
  foo(int* ip){
   return (*ip)++;
}
the visibility of .comm linkage do not support , we will have a separate patch for it.
we have the unsupported cases ("default" and "internal") , we will implement them in a a separate patch for it.

Reviewers: Jason Liu ,hubert.reinterpretcast,James Henderson

Differential Revision: https://reviews.llvm.org/D75866
2020-06-09 16:15:06 -04:00
Fangrui Song 773f8dbd1d [MC] Fix double negation of DW_CFA_def_cfa
Negations are incorrectly added in numerous places and the code just happens to work.
Also fix a missed DW_CFA_def_cfa_offset negation in c693b9c321d5a40d012340619674cf790c9ac86c:
ARMAsmBackendDarwin::generateCompactUnwindEncoding
2020-05-22 21:02:53 -07:00
Fangrui Song c693b9c321 [MC] Fix double negation of DW_CFA_def_cfa_offset
Negations are incorrectly added in two places and the code works just
because the negations cancel each other.
2020-05-22 20:01:40 -07:00
Fangrui Song 0840d725c4 [MC] Change MCCFIInstruction::createDefCfaOffset to cfiDefCfaOffset which does not negate Offset
The negative Offset has caused a bunch of problems and confused quite a
few call sites. Delete the unneeded negation and fix all call sites.
2020-05-22 17:07:11 -07:00
Fangrui Song 7e49dc6184 [MC] Change MCCFIInstruction::createDefCfa to cfiDefCfa which does not negate Offset
The negative Offset has caused a bunch of problems and confused quite a
few call sites. Delete the unneeded negation and fix all call sites.
2020-05-22 15:47:26 -07:00
Shengchen Kan c031378ce0 [MC][NFC] Use camelCase style for functions in MCObjectStreamer 2020-04-20 20:09:20 -07:00
Fangrui Song 7d1ff446b6 [MC] Rename MCSection*::getSectionName() to getName(). NFC
A pending change will merge MCSection*::getName() to MCSection::getName().
2020-04-15 16:48:14 -07:00
Benjamin Kramer 880ec421dd [MC] Use a byte_swap in emitIntValue instead of doing it in a loop. NFCI. 2020-04-06 15:51:24 +02:00
Fangrui Song 549b436beb [MC] De-capitalize MCStreamer::Emit{Bundle,Addrsig}* etc
So far, all non-COFF-related Emit* functions have been de-capitalized.
2020-02-15 09:11:48 -08:00
Fangrui Song 774971030d [MCStreamer] De-capitalize EmitValue EmitIntValue{,InHex} 2020-02-14 23:08:40 -08:00
Fangrui Song 6d2d589b06 [MC] De-capitalize another set of MCStreamer::Emit* functions
Emit{ValueTo,Code}Alignment Emit{DTP,TP,GP}* EmitSymbolValue etc
2020-02-14 19:26:52 -08:00
Fangrui Song a55daa1461 [MC] De-capitalize some MCStreamer::Emit* functions 2020-02-14 19:11:53 -08:00
Fangrui Song bcd24b2d43 [AsmPrinter][MCStreamer] De-capitalize EmitInstruction and EmitCFI* 2020-02-13 22:08:55 -08:00
Fangrui Song 0bc77a0f0d [AsmPrinter] De-capitalize some AsmPrinter::Emit* functions
Similar to rL328848.
2020-02-13 13:38:33 -08:00
Fangrui Song aa708763d3 [MC] Add parameter `Address` to MCInstPrinter::printInst
printInst prints a branch/call instruction as `b offset` (there are many
variants on various targets) instead of `b address`.

It is a convention to use address instead of offset in most external
symbolizers/disassemblers. This difference makes `llvm-objdump -d`
output unsatisfactory.

Add `uint64_t Address` to printInst(), so that it can pass the argument to
printInstruction(). `raw_ostream &OS` is moved to the last to be
consistent with other print* methods.

The next step is to pass `Address` to printInstruction() (generated by
tablegen from the instruction set description). We can gradually migrate
targets to print addresses instead of offsets.

In any case, downstream projects which don't know `Address` can pass 0 as
the argument.

Reviewed By: jhenderson

Differential Revision: https://reviews.llvm.org/D72172
2020-01-06 20:42:22 -08:00
Jason Liu 0dc0572b48 [XCOFF][AIX] Differentiate usage of label symbol and csect symbol
Summary:
 We are using symbols to represent label and csect interchangeably before, and that could be a problem.
There are cases we would need to add storage mapping class to the symbol if that symbol is actually the name of a csect, but it's hard for us to figure out whether that symbol is a label or csect.

This patch intend to do the following:
    1. Construct a QualName (A name include the storage mapping class)
       MCSymbolXCOFF for every MCSectionXCOFF.
    2. Keep a pointer to that QualName inside of MCSectionXCOFF.
    3. Use that QualName whenever we need a symbol refers to that
       MCSectionXCOFF.
    4. Adapt the snowball effect from the above changes in
       XCOFFObjectWriter.cpp.

Reviewers: xingxue, DiggerLin, sfertile, daltenty, hubert.reinterpretcast

Reviewed By: DiggerLin, daltenty

Subscribers: wuzish, nemanjai, mgorny, hiraditya, kbarton, jsji, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69633
2019-11-08 09:30:10 -05:00
Reid Kleckner 7bbe711fb1 Avoid including CodeView/SymbolRecord.h from MCStreamer.h
Move the types needed out so they can be forward declared instead.

llvm-svn: 375325
2019-10-19 01:44:09 +00:00
Reid Kleckner a33474d595 [X86] Print register names in .seh_* directives
Also improve assembler parser register validation for .seh_ directives.
This requires moving X86-specific seh directive handling into the x86
backend, which addresses some assembler FIXMEs.

Differential Revision: https://reviews.llvm.org/D66625

llvm-svn: 370533
2019-08-30 21:23:05 +00:00
Jonas Devlieghere 0eaee545ee [llvm] Migrate llvm::make_unique to std::make_unique
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.

llvm-svn: 369013
2019-08-15 15:54:37 +00:00
David Tenty 8558aac82c Enable assembly output of local commons for AIX
Summary:
This patch enable assembly output of local commons for AIX using .lcomm
directives. Adds a EmitXCOFFLocalCommonSymbol to MCStreamer so we can emit the
AIX version of .lcomm assembly directives which include a csect name. Handle the
case of BSS locals in PPCAIXAsmPrinter by using EmitXCOFFLocalCommonSymbol. Adds
a test for generating .lcomm on AIX Targets.

Reviewers: cebowleratibm, hubert.reinterpretcast, Xiangling_L, jasonliu, sfertile

Reviewed By: sfertile

Subscribers: wuzish, nemanjai, hiraditya, kbarton, MaskRay, jsji, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D64825

llvm-svn: 368306
2019-08-08 15:40:35 +00:00
Nilanjana Basu da60fc813c Changing representation of .cv_def_range directives in Codeview debug info assembly format for better readability
llvm-svn: 367867
2019-08-05 14:16:58 +00:00
Nilanjana Basu b5e4d7de17 Revert "Changing representation of .cv_def_range directives in Codeview debug info assembly format for better readability"
This reverts commit a885afa9fa.

llvm-svn: 367861
2019-08-05 13:55:21 +00:00
Nilanjana Basu a885afa9fa Changing representation of .cv_def_range directives in Codeview debug info assembly format for better readability
llvm-svn: 367850
2019-08-05 13:11:51 +00:00
Eric Christopher 5fb56b1966 Temporarily Revert "Changing representation of cv_def_range directives in Codeview debug info assembly format for better readability"
This is breaking bots and the author asked me to revert.

This reverts commit 367704.

llvm-svn: 367707
2019-08-02 19:10:37 +00:00
Nilanjana Basu 1c67521591 Changing representation of cv_def_range directives in Codeview debug info assembly format for better readability
llvm-svn: 367704
2019-08-02 18:44:39 +00:00
Alex Lorenz da1dfecd32 Add support for the 'macCatalyst' MachO platform
Mac Catalyst is a new MachO platform in macOS Catalina.
It always uses the build_version MachO load command.

Differential Revision: https://reviews.llvm.org/D64107

llvm-svn: 364981
2019-07-02 23:47:11 +00:00
Eric Christopher b414487719 Move getNumFrameInfos and getDwarfFrameInfos out of line and remove
the MCDwarf.h include.

This removes 50 transitive dependencies for a modification of
MCDwarf.h in a build of llc for a pair of out of line functions
and reduces the build overhead of 'touch MCDwarf.h" by 15% without
impacting test time of check-llvm.

llvm-svn: 358264
2019-04-12 07:42:35 +00:00
Eric Christopher 798e83b5d6 NFC: Move API uses of MD5::MD5Result to Optional rather than a pointer.
Differential Revision: https://reviews.llvm.org/D60290

llvm-svn: 357736
2019-04-04 23:34:38 +00:00
Markus Lavin b86ce219f4 [DebugInfo] Introduce DW_OP_LLVM_convert
Introduce a DW_OP_LLVM_convert Dwarf expression pseudo op that allows
for a convenient way to perform type conversions on the Dwarf expression
stack. As an additional bonus it paves the way for using other Dwarf
v5 ops that need to reference a base_type.

The new DW_OP_LLVM_convert is used from lib/Transforms/Utils/Local.cpp
to perform sext/zext on debug values but mainly the patch is about
preparing terrain for adding other Dwarf v5 ops that need to reference a
base_type.

For Dwarf v5 the op maps to DW_OP_convert and for earlier versions a
complex shift & mask pattern is generated to emulate sext/zext.

This is a recommit of r356442 with trivial fixes for the failing tests.

Differential Revision: https://reviews.llvm.org/D56587

llvm-svn: 356451
2019-03-19 13:16:28 +00:00
Markus Lavin ad78768d59 Revert "[DebugInfo] Introduce DW_OP_LLVM_convert"
This reverts commit 1cf4b593a7ebd666fc6775f3bd38196e8e65fafe.

Build bots found failing tests not detected locally.

Failing Tests (3):
  LLVM :: DebugInfo/Generic/convert-debugloc.ll
  LLVM :: DebugInfo/Generic/convert-inlined.ll
  LLVM :: DebugInfo/Generic/convert-linked.ll

llvm-svn: 356444
2019-03-19 09:17:28 +00:00
Markus Lavin cd8a940b37 [DebugInfo] Introduce DW_OP_LLVM_convert
Introduce a DW_OP_LLVM_convert Dwarf expression pseudo op that allows
for a convenient way to perform type conversions on the Dwarf expression
stack. As an additional bonus it paves the way for using other Dwarf
v5 ops that need to reference a base_type.

The new DW_OP_LLVM_convert is used from lib/Transforms/Utils/Local.cpp
to perform sext/zext on debug values but mainly the patch is about
preparing terrain for adding other Dwarf v5 ops that need to reference a
base_type.

For Dwarf v5 the op maps to DW_OP_convert and for earlier versions a
complex shift & mask pattern is generated to emulate sext/zext.

Differential Revision: https://reviews.llvm.org/D56587

llvm-svn: 356442
2019-03-19 08:48:19 +00:00
Andrea Di Biagio edbf06a767 [AsmPrinter] Remove hidden flag -print-schedule.
This patch removes hidden codegen flag -print-schedule effectively reverting the
logic originally committed as r300311
(https://llvm.org/viewvc/llvm-project?view=revision&revision=300311).

Flag -print-schedule was originally introduced by r300311 to address PR32216
(https://bugs.llvm.org/show_bug.cgi?id=32216). That bug was about adding "Better
testing of schedule model instruction latencies/throughputs".

These days, we can use llvm-mca to test scheduling models. So there is no longer
a need for flag -print-schedule in LLVM. The main use case for PR32216 is
now addressed by llvm-mca.
Flag -print-schedule is mainly used for debugging purposes, and it is only
actually used by x86 specific tests. We already have extensive (latency and
throughput) tests under "test/tools/llvm-mca" for X86 processor models. That
means, most (if not all) existing -print-schedule tests for X86 are redundant.

When flag -print-schedule was first added to LLVM, several files had to be
modified; a few APIs gained new arguments (see for example method
MCAsmStreamer::EmitInstruction), and MCSubtargetInfo/TargetSubtargetInfo gained
a couple of getSchedInfoStr() methods.

Method getSchedInfoStr() had to originally work for both MCInst and
MachineInstr. The original implmentation of getSchedInfoStr() introduced a
subtle layering violation (reported as PR37160 and then fixed/worked-around by
r330615).
In retrospect, that new API could have been designed more optimally. We can
always query MCSchedModel to get the latency and throughput. More importantly,
the "sched-info" string should not have been generated by the subtarget.
Note, r317782 fixed an issue where "print-schedule" didn't work very well in the
presence of inline assembly. That commit is also reverted by this change.

Differential Revision: https://reviews.llvm.org/D57244

llvm-svn: 353043
2019-02-04 12:51:26 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Kristina Brooks e434280f3d [MCStreamer] Use report_fatal_error in EmitRawTextImpl
Use report_fatal_error in MCStreamer::EmitRawTextImpl instead of
using errs() and explain the rationale behind it not being
llvm_unreachable() to save confusion for any future maintainers.

Differential Revision: https://reviews.llvm.org/D56245

llvm-svn: 350342
2019-01-03 18:42:31 +00:00
Kristina Brooks bbbec9daa4 Don't go over 80 chars in MCStreamer.cpp. NFC.
Fixing up style issues around the area to prepare for
a larger differential.

llvm-svn: 350286
2019-01-03 06:06:38 +00:00
Luke Cheeseman 41a9e53500 [Dwarf/AArch64] Return address signing B key dwarf support
- When signing return addresses with -msign-return-address=<scope>{+<key>},
  either the A key instructions or the B key instructions can be used. To
  correctly authenticate the return address, the unwinder/debugger must know
  which key was used to sign the return address.
- When and exception is thrown or a break point reached, it may be necessary to
  unwind the stack. To accomplish this, the unwinder/debugger must be able to
  first authenticate an the return address if it has been signed.
- To enable this, the augmentation string of CIEs has been extended to allow
  inclusion of a 'B' character. Functions that are signed using the B key
  variant of the instructions should have and FDE whose associated CIE has a 'B'
  in the augmentation string.
- One must also be able to preserve these semantics when first stepping from a
  high level language into assembly and then, as a second step, into an object
  file. To achieve this, I have introduced a new assembly directive
  '.cfi_b_key_frame ', that tells the assembler the current frame uses return
  address signing with the B key.
- This ensures that the FDE is associated with a CIE that has 'B' in the
  augmentation string.

Differential Revision: https://reviews.llvm.org/D51798

llvm-svn: 349895
2018-12-21 10:45:08 +00:00
Luke Cheeseman f57d7d8237 [AArch64] - Return address signing dwarf support
- Reapply changes intially introduced in r343089
- The archtecture info is no longer loaded whenever a DWARFContext is created
- The runtimes libraries (santiziers) make use of the dwarf context classes but
  do not intialise the target info
- The architecture of the object can be obtained without loading the target info
- Adding a method to the dwarf context to get this information and multiplex the
  string printing later on

Differential Revision: https://reviews.llvm.org/D55774

llvm-svn: 349472
2018-12-18 10:37:42 +00:00
Alex Lorenz afa75d7843 [macho] save the SDK version stored in module metadata into the version min and
build version load commands in the object file

This commit introduces a new metadata node called "SDK Version". It will be set
by the frontend to mark the platform SDK (macOS/iOS/etc) version which was used
during that particular compilation.
This node is used when machine code is emitted, by either saving the SDK version
into the appropriate macho load command (version min/build version), or by
emitting the assembly for these load commands with the SDK version specified as
well.
The assembly for both load commands is extended by allowing it to contain the
sdk_version X, Y [, Z] trailing directive to represent the SDK version
respectively.

rdar://45774000

Differential Revision: https://reviews.llvm.org/D55612

llvm-svn: 349119
2018-12-14 01:14:10 +00:00
Luke Cheeseman 6db3a6a4a7 Revert r347490 as it breaks address sanitizer builds
llvm-svn: 347499
2018-11-23 17:13:06 +00:00
Luke Cheeseman d6dbd64104 Revert r343341
- Cannot reproduce the build failure locally and the build logs have
  been deleted.

llvm-svn: 347490
2018-11-23 11:01:47 +00:00