Commit Graph

20 Commits

Author SHA1 Message Date
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Shiva Chen 801bf7ebbe [DebugInfo] Examine all uses of isDebugValue() for debug instructions.
Because we create a new kind of debug instruction, DBG_LABEL, we need to
check all passes which use isDebugValue() to check MachineInstr is debug
instruction or not. When expelling debug instructions, we should expel
both DBG_VALUE and DBG_LABEL. So, I create a new function,
isDebugInstr(), in MachineInstr to check whether the MachineInstr is
debug instruction or not.

This patch has no new test case. I have run regression test and there is
no difference in regression test.

Differential Revision: https://reviews.llvm.org/D45342

Patch by Hsiangkai Wang.

llvm-svn: 331844
2018-05-09 02:42:00 +00:00
David Blaikie b3bde2ea50 Fix a bunch more layering of CodeGen headers that are in Target
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).

llvm-svn: 318490
2017-11-17 01:07:10 +00:00
Diana Picus 4879b050cc [ARM] Do not test for CPUs, use SubtargetFeatures (Part 3). NFCI
This is a follow-up for r273544 and r273853.

The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
This commit also marks them as obsolete.

Differential Revision: http://reviews.llvm.org/D21796

llvm-svn: 274616
2016-07-06 09:22:23 +00:00
Chad Rosier 67336305f5 Use new MachineInstr mayLoadOrStore() API. NFC.
llvm-svn: 238044
2015-05-22 20:07:34 +00:00
Eric Christopher 1b21f00904 Migrate ARM except for TTI, AsmPrinter, and frame lowering
away from getSubtargetImpl.

llvm-svn: 227399
2015-01-29 00:19:33 +00:00
Eric Christopher d913448b38 Remove the TargetMachine forwards for TargetSubtargetInfo based
information and update all callers. No functional change.

llvm-svn: 214781
2014-08-04 21:25:23 +00:00
Craig Topper 062a2baef0 [C++] Use 'nullptr'. Target edition.
llvm-svn: 207197
2014-04-25 05:30:21 +00:00
Benjamin Kramer b6d0bd48bd [C++11] Replace llvm::next and llvm::prior with std::next and std::prev.
Remove the old functions.

llvm-svn: 202636
2014-03-02 12:27:27 +00:00
Bill Wendling f95178e679 Don't cache the instruction and register info from the TargetMachine, because
the internals of TargetMachine could change.

llvm-svn: 183488
2013-06-07 05:54:19 +00:00
Silviu Baranga b47bb94f93 This patch introduces A15 as a target in LLVM.
llvm-svn: 163803
2012-09-13 15:05:10 +00:00
Evan Cheng 7fae11b231 - Add MachineInstrBundle.h and MachineInstrBundle.cpp. This includes a function
to finalize MI bundles (i.e. add BUNDLE instruction and computing register def
  and use lists of the BUNDLE instruction) and a pass to unpack bundles.
- Teach more of MachineBasic and MachineInstr methods to be bundle aware.
- Switch Thumb2 IT block to MI bundles and delete the hazard recognizer hack to
  prevent IT blocks from being broken apart.

llvm-svn: 146542
2011-12-14 02:11:42 +00:00
Evan Cheng 7f8e563a69 Add bundle aware API for querying instruction properties and switch the code
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.

For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.

llvm-svn: 146026
2011-12-07 07:15:52 +00:00
Evan Cheng 6cc775f905 - Rename TargetInstrDesc, TargetOperandInfo to MCInstrDesc and MCOperandInfo and
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.

llvm-svn: 134021
2011-06-28 19:10:37 +00:00
Bob Wilson 0858c3aaed This patch combines several changes from Evan Cheng for rdar://8659675.
Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
   of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
   additional pipeline stall. So it's frequently better to single codegen
   vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
   stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
   vmla + vmla is very bad. But this isn't ideal either:
     vmul
     vadd
     vmla
   Instead, we want to expand the second vmla:
     vmla
     vmul
     vadd
   Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
   faster.

Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.

A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
   compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
   fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
   vmla / vmls will trigger one of the special hazards.

Enable these fp vmlx codegen changes for Cortex-A9.

llvm-svn: 129775
2011-04-19 18:11:57 +00:00
Evan Cheng 04ad35b53f VFP single precision arith instructions can go down to NEON pipeline, but on Cortex-A8 only.
llvm-svn: 126238
2011-02-22 19:53:14 +00:00
Evan Cheng e45d685895 Clean up ARM subtarget code by using Triple ADT.
llvm-svn: 123276
2011-01-11 21:46:47 +00:00
Andrew Trick 10ffc2b6c2 Various bits of framework needed for precise machine-level selection
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.

Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.

Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.

Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.

ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.

ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.

llvm-svn: 122541
2010-12-24 05:03:26 +00:00
Andrew Trick 00067fb147 Generalize PostRAHazardRecognizer so it can be used in any pass for
both forward and backward scheduling. Rename it to
ScoreboardHazardRecognizer (Scoreboard is one word). Remove integer
division from the scoreboard's critical path.

llvm-svn: 121274
2010-12-08 20:04:29 +00:00
Evan Cheng 62c7b5bf76 Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
   of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
   additional pipeline stall. So it's frequently better to single codegen
   vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
   stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
   vmla + vmla is very bad. But this isn't ideal either:
     vmul
     vadd
     vmla
   Instead, we want to expand the second vmla:
     vmla
     vmul
     vadd
   Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
   faster.

Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.

A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
   compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
   fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
   vmla / vmls will trigger one of the special hazards.

Work in progress, only A+B are enabled.

llvm-svn: 120960
2010-12-05 22:04:16 +00:00