Makes it easier to see mistakes such as the one fixed in r329178 and makes
the different target CMakeLists more consistent.
Also remove some stale-looking comments from the Nios2 target cmakefile.
No intended behavior change.
llvm-svn: 329181
Summary:
Avoids having to list all intrinsics manually.
This is in preparation for the new dimension-aware image intrinsics,
which I'd rather not have to list here by hand.
Change-Id: If7ced04998397ef68c4cb8f7de66b5050fb767e5
Reviewers: arsenm, rampitec, b-sumner
Subscribers: kzhuravl, wdng, mgorny, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D44937
llvm-svn: 328938
This patch adds a post-linking pass which replaces the function pointer of enqueued
block kernel with a global variable (runtime handle) and adds
runtime-handle attribute to the enqueued block kernel.
In LLVM CodeGen the runtime-handle metadata will be translated to
RuntimeHandle metadata in code object. Runtime allocates a global buffer
for each kernel with RuntimeHandel metadata and saves the kernel address
required for the AQL packet into the buffer. __enqueue_kernel function
in device library knows that the invoke function pointer in the block
literal is actually runtime handle and loads the kernel address from it
and puts it into AQL packet for dispatching.
This cannot be done in FE since FE cannot create a unique global variable
with external linkage across LLVM modules. The global variable with internal
linkage does not work since optimization passes will try to replace loads
of the global variable with its initialization value.
Differential Revision: https://reviews.llvm.org/D38610
llvm-svn: 315352
The pass does simplifications of well known AMD library calls.
If given -amdgpu-prelink option it works in a pre-link mode which
allows to reference new library functions which will be linked in
later.
In addition it also used to process traditional AMD option
-fuse-native which allows to replace some of the functions with
their fast native implementations from the library.
The necessary glue to pass the prelink option and translate
-fuse-native is to be added to the driver.
Differential Revision: https://reviews.llvm.org/D36436
llvm-svn: 310731
This hasn't done anything in a long time. This was
running after the the control flow pseudos were expanded,
so this would never find them. The control flow pseudo
expansion was moved to solve the problem this pass was
supposed to solve in the first place, except handling
it earlier also fixes it for fast regalloc which doesn't
use LiveIntervals.
Noticed by checking LCOV reports.
llvm-svn: 310274
Summary:
Whole Wavefront Wode (WWM) is similar to WQM, except that all of the
lanes are always enabled, regardless of control flow. This is required
for implementing wavefront reductions in non-uniform control flow, where
we need to use the inactive lanes to propagate intermediate results, so
they need to be enabled. We need to propagate WWM to uses (unless
they're explicitly marked as exact) so that they also propagate
intermediate results correctly. We do the analysis and exec mask munging
during the WQM pass, since there are interactions with WQM for things
that require both WQM and WWM. For simplicity, WWM is entirely
block-local -- blocks are never WWM on entry or exit of a block, and WWM
is not propagated to the block level. This means that computations
involving WWM cannot involve control flow, but we only ever plan to use
WWM for a few limited purposes (none of which involve control flow)
anyways.
Shaders can ask for WWM using the @llvm.amdgcn.wwm intrinsic. There
isn't yet a way to turn WWM off -- that will be added in a future
change.
Finally, it turns out that turning on inactive lanes causes a number of
problems with register allocation. While the best long-term solution
seems like teaching LLVM's register allocator about predication, for now
we need to add some hacks to prevent ourselves from getting into trouble
due to constraints that aren't currently expressed in LLVM. For the gory
details, see the comments at the top of SIFixWWMLiveness.cpp.
Reviewers: arsenm, nhaehnle, tpr
Subscribers: kzhuravl, wdng, mgorny, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D35524
llvm-svn: 310087
With this change, the GlobalISel library gets always built. In
particular, this is not possible to opt GlobalISel out of the build
using the LLVM_BUILD_GLOBAL_ISEL variable any more.
llvm-svn: 309990
Add a pass to remove redundant S_OR_B64 instructions enabling lanes in
the exec. If two SI_END_CF (lowered as S_OR_B64) come together without any
vector instructions between them we can only keep outer SI_END_CF, given
that CFG is structured and exec bits of the outer end statement are always
not less than exec bit of the inner one.
This needs to be done before the RA to eliminate saved exec bits registers
but after register coalescer to have no vector registers copies in between
of different end cf statements.
Differential Revision: https://reviews.llvm.org/D35967
llvm-svn: 309762
It is better to return arguments directly in registers
if we are making a call rather than introducing expensive
stack usage. In one of sample compile from one of
Blender's many kernel variants, this fires on about
~20 different functions. Future improvements may be to
recognize simple cases where the pointer is indexing a small
array. This also fails when the store to the out argument
is in a separate block from the return, which happens in
a few of the Blender functions. This should also probably
be using MemorySSA which might help with that.
I'm not sure this is correct as a FunctionPass, but
MemoryDependenceAnalysis seems to not work with
a ModulePass.
I'm also not sure where it should run.I think it should
run before DeadArgumentElimination, so maybe either
EP_CGSCCOptimizerLate or EP_ScalarOptimizerLate.
llvm-svn: 309416
StructurizeCFG can't handle cases with multiple
returns creating regions with multiple exits.
Create a copy of UnifyFunctionExitNodes that only
unifies exit nodes that skips exit nodes
with uniform branch sources.
llvm-svn: 298729
Summary:
First iteration of SDWA peephole.
This pass tries to combine several instruction into one SDWA instruction. E.g. it converts:
'''
V_LSHRREV_B32_e32 %vreg0, 16, %vreg1
V_ADD_I32_e32 %vreg2, %vreg0, %vreg3
V_LSHLREV_B32_e32 %vreg4, 16, %vreg2
'''
Into:
'''
V_ADD_I32_sdwa %vreg4, %vreg1, %vreg3 dst_sel:WORD_1 dst_unused:UNUSED_PAD src0_sel:WORD_1 src1_sel:DWORD
'''
Pass structure:
1. Iterate over machine instruction in basic block and try to apply "SDWA patterns" to each of them. SDWA patterns match machine instruction into either source or destination SDWA operand. E.g. ''' V_LSHRREV_B32_e32 %vreg0, 16, %vreg1''' is matched to source SDWA operand '''%vreg1 src_sel:WORD_1'''.
2. Iterate over found SDWA operands and find instruction that could be potentially coverted into SDWA. E.g. for source SDWA operand potential instruction are all instruction in this basic block that uses '''%vreg0'''
3. Iterate over all potential instructions and check if they can be converted into SDWA.
4. Convert instructions to SDWA.
This review contains basic implementation of SDWA peephole pass. This pass requires additional testing fot both correctness and performance (no performance testing done).
There are several ways this pass can be improved:
1. Make this pass work on whole function not only basic block. As I can see this can be done right now without changes to pass.
2. Introduce more SDWA patterns
3. Introduce mnemonics to limit when SDWA patterns should apply
Reviewers: vpykhtin, alex-t, arsenm, rampitec
Subscribers: wdng, nhaehnle, mgorny
Differential Revision: https://reviews.llvm.org/D30038
llvm-svn: 298365
This is direct port of HSAILAliasAnalysis pass, just cleaned for
style and renamed.
Differential Revision: https://reviews.llvm.org/D31103
llvm-svn: 298172
Regalloc creates COPY instructions which do not formally use VALU.
That results in v_mov instructions displaced after exec mask modification.
One pass which do it is SIOptimizeExecMasking, but potentially it can be
done by other passes too.
This patch adds a pass immediately after regalloc to add implicit exec
use operand to all VGPR copy instructions.
Differential Revision: https://reviews.llvm.org/D28874
llvm-svn: 292956
Multiple metadata values for records such as opencl.ocl.version, llvm.ident
and similar are created after linking several modules. For some of them, notably
opencl.ocl.version, this creates semantic problem because we cannot tell which
version of OpenCL the composite module conforms.
Moreover, such repetitions of identical values often create a huge list of
unneeded metadata, which grows bitcode size both in memory and stored on disk.
It can go up to several Mb when linked against our OpenCL library. Lastly, such
long lists obscure reading of dumped IR.
The pass unifies metadata after linking.
Differential Revision: https://reviews.llvm.org/D25381
llvm-svn: 289092
Fixes to allow spilling all registers at the end of the block
work with exec modifications. Don't emit s_and_saveexec_b64 for
if lowering, and instead emit copies. Mark control flow mask
instructions as terminators to get correct spill code placement
with fast regalloc, and then have a separate optimization pass
form the saveexec.
This should work if SGPRs are spilled to VGPRs, but
will likely fail in the case that an SGPR spills to memory
and no workitem takes a divergent branch.
llvm-svn: 282667
Do most of the lowering in a pre-RA pass. Keep the skip jump
insertion late, plus a few other things that require more
work to move out.
One concern I have is now there may be COPY instructions
which do not have the necessary implicit exec uses
if they will be lowered to v_mov_b32.
This has a positive effect on SGPR usage in shader-db.
llvm-svn: 279464
Split AMDGPUSubtarget into amdgcn/r600 specific subclasses.
This removes most of the static_casting of the basic codegen
classes everywhere, and tries to restrict the features
visible on the wrong target.
llvm-svn: 273652
Summary:
This includes a hazard recognizer implementation to replace some of
the hazard handling we had during frame index elimination.
Reviewers: arsenm
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18602
llvm-svn: 268143
Summary:
This adds the necessary target code to be able to run the ir translator.
Lowering function arguments and returns is a nop and there is no support
for RegBankSelect.
Reviewers: arsenm, qcolombet
Subscribers: arsenm, joker.eph, vkalintiris, llvm-commits
Differential Revision: http://reviews.llvm.org/D19077
llvm-svn: 266356
Summary:
This pass is unnecessary and overly conservative. It was motivated by
situations like
def %vreg0:SGPR_32
...
if-block:
..
def %vreg1:SGPR_32
...
else-block:
...
use %vreg0:SGPR_32
...
and similar situations with uses after the non-uniform control flow, where
we are not allowed to assign %vreg0 and %vreg1 to the same physical register,
even though in the original, thread/workitem-based CFG, it looks like the
live ranges of these registers do not overlap.
However, by the time register allocation runs, we have moved to a wave-based
CFG that accurately represents the fact that the wave may run through both
the if- and the else-block. So the live ranges of %vreg0 and %vreg1 already
overlap even without the SIFixSGPRLiveRanges pass.
In addition to proving this change correct, I have tested it with Piglit
and a small number of other tests.
Reviewers: arsenm, tstellarAMD
Subscribers: MatzeB, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19041
llvm-svn: 266345
Summary:
Whole quad mode is already enabled for pixel shaders that compute
derivatives, but it must be suspended for instructions that cause a
shader to have side effects (i.e. stores and atomics).
This pass addresses the issue by storing the real (initial) live mask
in a register, masking EXEC before instructions that require exact
execution and (re-)enabling WQM where required.
This pass is run before register coalescing so that we can use
machine SSA for analysis.
The changes in this patch expose a problem with the second machine
scheduling pass: target independent instructions like COPY implicitly
use EXEC when they operate on VGPRs, but this fact is not encoded in
the MIR. This can lead to miscompilation because instructions are
moved past changes to EXEC.
This patch fixes the problem by adding use-implicit operands to
target independent instructions. Some general codegen passes are
relaxed to work with such implicit use operands.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: MatzeB, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18162
llvm-svn: 263982
Patch by: Konstantin Zhuravlyov
Summary: Tools, such as debugger, need to pause execution based on user input (i.e. breakpoint). In order to do this, two S_NOP instructions are inserted for each high level source statement: one before first isa instruction of high level source statement, and one after last isa instruction of high level source statement. Further, debugger may replace S_NOP instructions with S_TRAP instructions based on user input.
Reviewers: tstellarAMD, arsenm
Subscribers: echristo, dblaikie, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17454
llvm-svn: 262579
Changes:
- Added disassembler project
- Fixed all decoding conflicts in .td files
- Added DecoderMethod=“NONE” option to Target.td that allows to
disable decoder generation for an instruction.
- Created decoding functions for VS_32 and VReg_32 register classes.
- Added stubs for decoding all register classes.
- Added several tests for disassembler
Disassembler only supports:
- VI subtarget
- VOP1 instruction encoding
- 32-bit register operands and inline constants
[Valery]
One of the point that requires to pay attention to is how decoder
conflicts were resolved:
- Groups of target instructions were separated by using different
DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate
approach.
- There were conflicts in IMAGE_<> instructions caused by two
different reasons:
1. dmask wasn’t specified for the output (fixed)
2. There are image instructions that differ only by the number of
the address components but have the same encoding by the HW spec. The
actual number of address components is determined by the HW at runtime
using image resource descriptor starting from the VGPR encoded in an
IMAGE instruction. This means that we should choose only one instruction
from conflicting group to be the rule for decoder. I didn’t find the way
to disable decoder generation for an arbitrary instruction and therefore
made a onelinear fix to tablegen generator that would suppress decoder
generation when DecoderMethod is set to “NONE”. This is a change that
should be reviewed and submitted first. Otherwise I would need to
specify different DecoderNamespace for every instruction in the
conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not
used in other targets.
3. IMAGE_GATHER decoder generation is for now disabled and to be
done later.
[/Valery]
Patch By: Sam Kolton
Differential Revision: http://reviews.llvm.org/D16723
llvm-svn: 261185
Re-commit of r258951 after fixing layering violation.
The BPF and WebAssembly backends had identical code for emitting errors
for unsupported features, and AMDGPU had very similar code. This merges
them all into one DiagnosticInfo subclass, that can be used by any
backend.
There should be minimal functional changes here, but some AMDGPU tests
have been updated for the new format of errors (it used a slightly
different format to BPF and WebAssembly). The AMDGPU error messages will
now benefit from having precise source locations when debug info is
available.
llvm-svn: 259498