An attempt to recommit r346584 after failure on OSX build bot.
Fixed cache key computation in ThinLTOCodeGenerator and added
test case
llvm-svn: 347033
By early promoting the multiply to use an i16 element type we can avoid op legalization emit a second multiply for the 8 upper elements of the v16i8 type we would otherwise get.
llvm-svn: 347032
If a block had one of the _term instructions used for gluing
exec modifying instructions to the end of the block,
analyzeBranch would fail, preventing the verifier from catching
a broken successor list.
llvm-svn: 347027
When using multi-stage builds, we would like support cross-compilation.
Example is 2-stage build when the first stage is compiled for host while
the second stage is compiled for the target.
Normally, the second stage would be also used for compiling runtimes,
but that's not possible when cross-compiling, so we use the first stage
compiler instead. However, we still want to use the second stage paths.
To do so, we set the -resource-dir of the first stage compiler to point
to the resource directory of the second stage.
We also need compiler tools that support the target architecture. These
tools are not guaranteed to be present on the host, but in case of
multi-stage build, we can build these tools in the first stage.
Differential Revision: https://reviews.llvm.org/D54461
llvm-svn: 347025
Originally we created our 64-bit UID scheme by using the first byte as
sort of a "tag" to represent what kind of symbol this was, and we
re-used the PDB_SymType enumeration for this. For native pdb support,
this is not really the right abstraction layer, because what we really
want is something that tells us *how* to find the symbol. This means,
specifically, is in the globals stream / public stream / module stream /
TPI stream / etc, and for whichever one it is in, where is it within
that stream?
A good example of why the old namespacing scheme was insufficient is
that it is more or less impossible to create a uid for a field list
member of a class/struction/union/enum that tells you how to locate
the original record.
With this new scheme, the first byte is no longer a PDB_SymType enum
but a new enum created specifically to identify where in the PDB
this record lives. This gives us much better flexibility in
what kinds of symbols the uids can identify.
llvm-svn: 347018
We aren't going to use the upper bits of the multiply result that the extend would effect. So we don't need a specific type of extend.
This makes some reduction test cases shorter because we were previously trying to sign_extend a truncate which we can't eliminate.
llvm-svn: 347011
It fixes the case when Objective-C framework is added as a subframework
through a symlink. When parent framework infers a module map and fails
to detect a symlink, it would add a subframework as a submodule. And
when we parse module map for the subframework, we would encounter an
error like
> error: umbrella for module 'WithSubframework.Foo' already covers this directory
By implementing `getRealPath` "an egregious but useful hack" in
`ModuleMap::inferFrameworkModule` works as expected.
rdar://problem/45821279
Reviewers: bruno, benlangmuir, erik.pilkington
Reviewed By: bruno
Subscribers: hiraditya, dexonsmith, JDevlieghere, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D54245
llvm-svn: 347009
Add a pass to fixup various vector ISel issues.
Currently we handle converting GLOBAL_{LOAD|STORE}_*
and GLOBAL_Atomic_* instructions into their _SADDR variants.
This involves feeding the sreg into the saddr field of the new instruction.
llvm-svn: 347008
Summary:
`throw` instruction is a terminator in wasm, but BBs were not splitted
after `throw` instructions, causing machine instruction verifier to
fail.
This patch
- Splits BBs after `throw` instructions in WasmEHPrepare and adding an
unreachable instruction after `throw`, which will be deleted in
LateEHPrepare pass
- Refactors WasmEHPrepare into two member functions
- Changes the semantics of `eraseBBsAndChildren` in LateEHPrepare pass
to match that of WasmEHPrepare pass, which is newly added. Now
`eraseBBsAndChildren` does not delete BBs with remaining predecessors.
- Fixes style nits, making static function names conform to clang-tidy
- Re-enables the test temporarily disabled by rL346840 && rL346845
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D54571
llvm-svn: 347003
Removing this code doesn't affect any lit tests so it doesn't appear to be tested anymore. I assume it was when it was added, but I guess something else changed? Code coverage report also says its unused.
I mostly didn't like that it seemed to count the sign bits as if it was a sign_extend, but then set isPositive as if it was a zero_extend. It feels like we should have picked one interpretation?
Differential Revision: https://reviews.llvm.org/D54596
llvm-svn: 346995
* Add amdhsa prefix to names to allow other tools to use the metadata
without collision.
* Make names consistent.
* Simplify structure.
* Change note record ID.
* Switch from YAML to MsgPack format.
* Document metadata assembler directive.
Patch By: t-tye (Tony Tye)
Differential Revision: https://reviews.llvm.org/D53445
llvm-svn: 346992
Summary:
This fixes libLLVM.so ABI mismatches between llvm compiled with clang
and llvm compiled with gcc (PR39427).
Reviewers: bkramer, sylvestre.ledru, mgorny, hans
Reviewed By: bkramer, hans
Subscribers: dexonsmith, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D54540
llvm-svn: 346985
Use unsigned to calculate the subvector index to avoid a cast.
Remove an unnecessary condition and replace it with a stronger assert.
Use the InVT variable we updated when we extracted instead of grabbing it from the In SDValue.
llvm-svn: 346983
In reduceVMULWidth, we no longer need to worry about extending the vector to 128 bits first. Regular widening of extends, muls and shuffles will take care of that for us.
In combineMulToPMADDWD, we can handle v2i32 multiplies and allow the VPMADDWD to be widened to v4i32 during type legalization by adding custom widening like we do have for AVG/ADDUS/SUBUS. I had to modify that code a little to allow different and output VTs.
Differential Revision: https://reviews.llvm.org/D54512
llvm-svn: 346980
Summary:
The old return type did not allow for correct error reporting and was
causing a compiler warning.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D54586
llvm-svn: 346979
Add data structure to represent MessagePack "documents" and convert
to/from both MessagePack and YAML encodings.
Differential Revision: https://reviews.llvm.org/D48175
llvm-svn: 346978
We were adding the entire scalarization extraction cost for reductions, which returns the total cost of extracting every element of a vector type.
For reductions we don't need to do this - we just need to extract the 0'th element after the reduction pattern has completed.
Fixes PR37731
Differential Revision: https://reviews.llvm.org/D54585
llvm-svn: 346970
There's a potential miscompile here. It's unlikely in the real
world because this transform is guarded with shouldChangeType(),
but this test file doesn't include a standard data-layout for
some reason (despite including a custom 1), so we can see the bug.
llvm-svn: 346966
This fixes -filetype=null support when compiling for a Win32 target and the module has a CodeView flag.
The only places changed are the uses of getTargetStreamer function - this patch guards both of them with null checks.
Committed on behalf of @eush (Eugene Sharygin)
Differential Revision: https://reviews.llvm.org/D54008
llvm-svn: 346962
This is a problem seen in common rotate idioms as noted in:
https://bugs.llvm.org/show_bug.cgi?id=34924
Note that we are not canonicalizing standard IR (shifts and logic) to the intrinsics yet.
(Although I've written this before...) I think this is the last step before we enable
that transform. Ie, we could regress code by doing that transform without this
simplification in place.
In PR34924, I questioned whether this is a valid transform for target-independent IR,
but I convinced myself this is ok. If we're speculating a funnel shift by turning cmp+br
into select, then SimplifyCFG has already determined that the transform is justified.
It's possible that SimplifyCFG is not taking into account profile or other metadata,
but if that's true, then it's a bug independent of funnel shifts.
Also, we do have CGP code to restore a guard like this around an intrinsic if it can't
be lowered cheaply. But that isn't necessary for funnel shift because the default
expansion in SelectionDAGBuilder includes this same cmp+select.
Differential Revision: https://reviews.llvm.org/D54552
llvm-svn: 346960
C.EBREAK was defined with hasSideEffects = 0, which is incorrect and
inconsistent with the non-compressed instruction form. This patch corrects
this oversight.
This wouldn't cause codegen issues, as compressed instructions are only ever
generated by converting the non-compressed form as an MCInst. But having
correct flags is still worthwhile.
Differential Revision: https://reviews.llvm.org/D54256
Patch by Luís Marques.
llvm-svn: 346959
Mark the FREM SelectionDAG node as Expand, which is necessary in order to
support the frem IR instruction on RISC-V. This is expanded into a library
call. Adds the corresponding test. Previously, this would have triggered an
assertion at instruction selection time.
Differential Revision: https://reviews.llvm.org/D54159
Patch by Luís Marques.
llvm-svn: 346958
Reapply r346374 with the fixes for modules build.
Original summary:
This change implements assembler parser, code emitter, ELF object writer
and disassembler for the MSP430 ISA. Also, more instruction forms are added
to the target description.
Patch by Michael Skvortsov!
llvm-svn: 346948
Summary:
According to `MaskRay`, use `auto` for type inference, according to coding standards.
Delete some comments, because these comments can be easily inferred from codes.
Reviewers: jhenderson, MaskRay
Reviewed By: jhenderson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54573
llvm-svn: 346946
Logic to load 32-bit and 64-bit immediates is currently present in
RISCVAsmParser::emitLoadImm in order to support the li pseudoinstruction. With
the introduction of RV64 codegen, there is a greater benefit of sharing
immediate materialisation logic between the MC layer and codegen. The
generateInstSeq helper allows this by producing a vector of simple structs
representing the chosen instructions. This can then be consumed in the MC
layer to produce MCInsts or at instruction selection time to produce
appropriate SelectionDAG node. Sharing this logic means that both the li
pseudoinstruction and codegen can benefit from future optimisations, and
that this logic can be used for materialising constants during RV64 codegen.
This patch does contain a behaviour change: addi will now be produced on RV64
when no lui is necessary to materialise the constant. In that case addiw takes
x0 as the source register, so is semantically identical to addi.
Differential Revision: https://reviews.llvm.org/D52961
llvm-svn: 346937
This avoids some nasty shuffles when we have avx512. It will also prevent using zmm truncate instructions when a ymm instruction that zeroes part of an xmm register will do. Also avoid using avx512 truncate instructions when the input is 128 bits or less. These instructions are 2 uops on skx so we can probably find a better single uop shuffle like pshufb.
llvm-svn: 346936