Holding the constructor directly makes no sense when list-initialized arrays come into play. The constructor is now held in a CXXConstructExpr, if construction is what is done. The new design can also distinguish properly between list-initialization and direct-initialization, as well as implicit default-initialization constructors and explicit value-initialization constructors. Finally, doing it this way removes redundance from the AST because CXXNewExpr doesn't try to handle both the allocation and the initialization responsibilities.
This breaks the static analysis of new expressions. I've filed PR12014 to track this.
llvm-svn: 150682
expressions. This is mostly a simple refact, splitting the main "start
a lambda expression" function into smaller chunks that are driven
either from the parser (Sema::ActOnLambdaExpr) or during AST
transformation (TreeTransform::TransformLambdaExpr). A few minor
interesting points:
- Added new entry points for TreeTransform, so that we can
explicitly establish the link between the lambda closure type in the
template and the lambda closure type in the instantiation.
- Added a bit into LambdaExpr specifying whether it had an explicit
result type or not. We should have had this anyway.
This code is 'lightly' tested.
llvm-svn: 150417
- Capturing variables by-reference and by-copy within a lambda
- The representation of lambda captures
- The creation of the non-static data members in the lambda class
that store the captured variables
- The initialization of the non-static data members from the
captured variables
- Pretty-printing lambda expressions
There are a number of FIXMEs, both explicit and implied, including:
- Creating a field for a capture of 'this'
- Improved diagnostics for initialization failures when capturing
variables by copy
- Dealing with temporaries created during said initialization
- Template instantiation
- AST (de-)serialization
- Binding and returning the lambda expression; turning it into a
proper temporary
- Lots and lots of semantic constraints
- Parameter pack captures
llvm-svn: 149977
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
__int128_t and __uint128_t. Short and unsigned short integer literals support
is only to work around a crasher as reported in PR11179 and will be removed
once Clang no longer builds short integer literals.
llvm-svn: 143977
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
statements. As noted in the documentation for the AST node, the
semantics of __if_exists/__if_not_exists are somewhat different from
the way Visual C++ implements them, because our parsed-template
representation can't accommodate VC++ semantics without serious
contortions. Hopefully this implementation is "good enough".
llvm-svn: 142901
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
__builtin_astype(): Used to reinterpreted as another data type of the same size using for both scalar and vector data types.
Added test case.
llvm-svn: 132612
As might be surmised from their names, these aren't type traits, they're
expression traits. Amazingly enough, they're expression traits that we
have, and fully implement. These "type" traits are even parsed from the
same tokens as the expression traits. Luckily, the parser only tried the
expression trait parsing for these tokens, so this was all just a pile
of dead code.
llvm-svn: 130643
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
Patch authored by John Wiegley.
These type traits are used for parsing code that employs certain features of
the Embarcadero C++ compiler. Several of these constructs are also desired by
libc++, according to its project pages (such as __is_standard_layout).
llvm-svn: 130342
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
This introduces a few APIs on the AST to bundle up the standard-based
logic so that programmatic clients have access to exactly the same
behavior.
There is only one serious FIXME here: checking for non-trivial move
constructors and move assignment operators. Those bits need to be added
to the declaration and accessors provided.
This implementation should be enough for the uses of __is_trivial in
libstdc++ 4.6's C++98 library implementation.
Ideas for more thorough test cases or any edge cases missing would be
appreciated. =D
llvm-svn: 130057
that was ignored in a few places (most notably, code
completion). Introduce Selector::getNameForSlot() for the common case
where we only care about the name. Audit all uses of
getIdentifierInfoForSlot(), switching many over to getNameForSlot(),
fixing a few crashers.
Fixed <rdar://problem/8939352>, a code-completion crasher.
llvm-svn: 125977
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
there were only three virtual methods of any significance.
The primary way to grab child iterators now is with
Stmt::child_range children();
Stmt::const_child_range children() const;
where a child_range is just a std::pair of iterators suitable for
being llvm::tie'd to some locals. I've left the old child_begin()
and child_end() accessors in place, but it's probably a substantial
penalty to grab the iterators individually now, since the
switch-based dispatch is kindof inherently slower than vtable
dispatch. Grabbing them together is probably a slight win over the
status quo, although of course we could've achieved that with vtables, too.
I also reclassified SwitchCase (correctly) as an abstract Stmt
class, which (as the first such class that wasn't an Expr subclass)
required some fiddling in a few places.
There are somewhat gross metaprogramming hooks in place to ensure
that new statements/expressions continue to implement
getSourceRange() and children(). I had to work around a recent clang
bug; dgregor actually fixed it already, but I didn't want to
introduce a selfhosting dependency on ToT.
llvm-svn: 125183
semantics after the C++0x is_convertible type trait. This
implementation is not 100% complete, because it allows access errors
to be hard errors (rather than just evaluating false).
Original patch by Steven Watanabe!
llvm-svn: 124425