define physical registers. It's currently very restrictive, only catching
cases where the CE is in an immediate (and only) predecessor. But it catches
a surprising large number of cases.
rdar://10660865
llvm-svn: 147827
These heuristics are sufficient for enabling IV chains by
default. Performance analysis has been done for i386, x86_64, and
thumbv7. The optimization is rarely important, but can significantly
speed up certain cases by eliminating spill code within the
loop. Unrolled loops are prime candidates for IV chains. In many
cases, the final code could still be improved with more target
specific optimization following LSR. The goal of this feature is for
LSR to make the best choice of induction variables.
Instruction selection may not completely take advantage of this
feature yet. As a result, there could be cases of slight code size
increase.
Code size can be worse on x86 because it doesn't support postincrement
addressing. In fact, when chains are formed, you may see redundant
address plus stride addition in the addressing mode. GenerateIVChains
tries to compensate for the common cases.
On ARM, code size increase can be mitigated by using postincrement
addressing, but downstream codegen currently misses some opportunities.
llvm-svn: 147826
On Thumb, the displacement computation hardware uses the address of the
current instruction rouned down to a multiple of 4. Include this
rounding in the UserOffset we compute for each instruction.
When inline asm is present, the instruction alignment may not be known.
Constrain the maximum displacement instead in that case.
This makes it possible for CreateNewWater() and OffsetIsInRange() to
agree about the valid displacements. When they disagree, infinite
looping happens.
As always, test cases for this stuff are insane.
<rdar://problem/10660175>
llvm-svn: 147825
- reject definitions of enums within friend declarations
- require 'enum', not 'enum class', for non-declaring references to scoped
enumerations
llvm-svn: 147824
source file. Otherwise -g -save-temps will error out on the compile
of any .c file.
Fixes about 4000 of the errors in the clang-tests gdb test suite.
llvm-svn: 147819
functions that can create file descriptors and close them. It will warn when
there close file descriptor call that returns with EBADF and show the
corresponding stack backtraces that caused the issue. It will also log all
file descriptor create and delete calls. See the comments at the top of
FDInterposing.cpp for all of the details.
llvm-svn: 147816
After collecting chains, check if any should be materialized. If so,
hide the chained IV users from the LSR solver. LSR will only solve for
the head of the chain. GenerateIVChains will then materialize the
chained IV users by computing the IV relative to its previous value in
the chain.
In theory, chained IV users could be exposed to LSR's solver. This
would be considerably complicated to implement and I'm not aware of a
case where we need it. In practice it's more important to
intelligently prune the search space of nontrivial loops before
running the solver, otherwise the solver is often forced to prune the
most optimal solutions. Hiding the chained users does this well, so
that LSR is more likely to find the best IV for the chain as a whole.
llvm-svn: 147801
This collects a set of IV uses within the loop whose values can be
computed relative to each other in a sequence. Following checkins will
make use of this information.
llvm-svn: 147797
it was checked in as:
virtual bool ABI::FixCodeAddress (lldb::addr_t pc);
when it should have been:
virtual lldb::addr_t ABI::FixCodeAddress (lldb::addr_t pc);
llvm-svn: 147790
the anonymous namespace to its parent. Semantically, this means that
the anonymous namespaces defined in one module are distinct from the
anonymous namespaces defined in another module.
llvm-svn: 147782