https://reviews.llvm.org/D96033 contained a discussion regarding efficient
modeling of error recovery. @rjmccall has outlined the key ideas:
Conceptually, we can split the translation unit into a sequence of partial
translation units (PTUs). Every declaration will be associated with a unique PTU
that owns it.
The first key insight here is that the owning PTU isn't always the "active"
(most recent) PTU, and it isn't always the PTU that the declaration
"comes from". A new declaration (that isn't a redeclaration or specialization of
anything) does belong to the active PTU. A template specialization, however,
belongs to the most recent PTU of all the declarations in its signature - mostly
that means that it can be pulled into a more recent PTU by its template
arguments.
The second key insight is that processing a PTU might extend an earlier PTU.
Rolling back the later PTU shouldn't throw that extension away. For example, if
the second PTU defines a template, and the third PTU requires that template to
be instantiated at float, that template specialization is still part of the
second PTU. Similarly, if the fifth PTU uses an inline function belonging to the
fourth, that definition still belongs to the fourth. When we go to emit code in
a new PTU, we map each declaration we have to emit back to its owning PTU and
emit it in a new module for just the extensions to that PTU. We keep track of
all the modules we've emitted for a PTU so that we can unload them all if we
decide to roll it back.
Most declarations/definitions will only refer to entities from the same or
earlier PTUs. However, it is possible (primarily by defining a
previously-declared entity, but also through templates or ADL) for an entity
that belongs to one PTU to refer to something from a later PTU. We will have to
keep track of this and prevent unwinding to later PTU when we recognize it.
Fortunately, this should be very rare; and crucially, we don't have to do the
bookkeeping for this if we've only got one PTU, e.g. in normal compilation.
Otherwise, PTUs after the first just need to record enough metadata to be able
to revert any changes they've made to declarations belonging to earlier PTUs,
e.g. to redeclaration chains or template specialization lists.
It should even eventually be possible for PTUs to provide their own slab
allocators which can be thrown away as part of rolling back the PTU. We can
maintain a notion of the active allocator and allocate things like Stmt/Expr
nodes in it, temporarily changing it to the appropriate PTU whenever we go to do
something like instantiate a function template. More care will be required when
allocating declarations and types, though.
We would want the PTU to be efficiently recoverable from a Decl; I'm not sure
how best to do that. An easy option that would cover most declarations would be
to make multiple TranslationUnitDecls and parent the declarations appropriately,
but I don't think that's good enough for things like member function templates,
since an instantiation of that would still be parented by its original class.
Maybe we can work this into the DC chain somehow, like how lexical DCs are.
We add a different kind of translation unit `TU_Incremental` which is a
complete translation unit that we might nonetheless incrementally extend later.
Because it is complete (and we might want to generate code for it), we do
perform template instantiation, but because it might be extended later, we don't
warn if it declares or uses undefined internal-linkage symbols.
This patch teaches clang-repl how to recover from errors by disconnecting the
most recent PTU and update the primary PTU lookup tables. For instance:
```./clang-repl
clang-repl> int i = 12; error;
In file included from <<< inputs >>>:1:
input_line_0:1:13: error: C++ requires a type specifier for all declarations
int i = 12; error;
^
error: Parsing failed.
clang-repl> int i = 13; extern "C" int printf(const char*,...);
clang-repl> auto r1 = printf("i=%d\n", i);
i=13
clang-repl> quit
```
Differential revision: https://reviews.llvm.org/D104918
Template parameters are created in ASTImporter with the translation unit as DeclContext.
The DeclContext is later updated (by the create function of template classes).
ASTImporterLookupTable was not updated after these changes of the DC. The patch
adds update of the DeclContext in ASTImporterLookupTable.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D103792
Given `int foo, bar;`, TraverseAST reveals this tree:
TranslationUnitDecl
- foo
- bar
Before this patch, with the TraversalScope set to {foo}, TraverseAST yields:
foo
After this patch it yields:
TranslationUnitDecl
- foo
Also, TraverseDecl(TranslationUnitDecl) now respects the traversal scope.
---
The main effect of this today is that clang-tidy checks that match the
translationUnitDecl(), either in order to traverse it or check
parentage, should work.
Differential Revision: https://reviews.llvm.org/D104071
This implements the 'using enum maybe-qualified-enum-tag ;' part of
1099. It introduces a new 'UsingEnumDecl', subclassed from
'BaseUsingDecl'. Much of the diff is the boilerplate needed to get the
new class set up.
There is one case where we accept ill-formed, but I believe this is
merely an extended case of an existing bug, so consider it
orthogonal. AFAICT in class-scope the c++20 rule is that no 2 using
decls can bring in the same target decl ([namespace.udecl]/8). But we
already accept:
struct A { enum { a }; };
struct B : A { using A::a; };
struct C : B { using A::a;
using B::a; }; // same enumerator
this patch permits mixtures of 'using enum Bob;' and 'using Bob::member;' in the same way.
Differential Revision: https://reviews.llvm.org/D102241
This diff adds testcase for the issue fixed in https://reviews.llvm.org/D77468
but regression test was not added in the diff. On Clang 9 it caused
crash in cland during code completion.
Test Plan: check-clang-unit
Differential Revision: https://reviews.llvm.org/D103722
ParmVarDecl is created with translation unit as the parent DeclContext
and later moved to the correct DeclContext. ASTImporterLookupTable
should be updated at this move.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D103231
In the case of TypedefDecls we set the DeclContext after we imported it.
It turns out, it could lead to null pointer dereferences during the
cleanup part of a failed import.
This patch demonstrates this issue and fixes it by checking if the
DeclContext is available or not.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D102640
Reverts parts of https://reviews.llvm.org/D17183, but keeps the
resetDataLayout() API and adds an assert that checks that datalayout string and
user label prefix are in sync.
Approach 1 in https://reviews.llvm.org/D17183#2653279
Reduces number of TUs build for 'clang-format' from 689 to 575.
I also implemented approach 2 in D100764. If someone feels motivated
to make us use DataLayout more, it's easy to revert this change here
and go with D100764 instead. I don't plan on doing more work in this
area though, so I prefer going with the smaller, more self-consistent change.
Differential Revision: https://reviews.llvm.org/D100776
(PR49478)
As ArrayType::ArrayType mentioned in clang/lib/AST/Type.cpp, a
DependentSizedArrayType might not have size expression because it it
used as the type of a dependent array of unknown bound with a dependent
braced initializer.
Thus, I add a check when mangling array of that type.
This should fix https://bugs.llvm.org/show_bug.cgi?id=49478
Reviewed By: Richard Smith - zygoloid
Differential Revision: https://reviews.llvm.org/D99407
All three cases were imported correctly.
For BlockDecls, correctly means that we don't support importing them, thus an
error is the expected behaviour.
- BlockDecls were not yet covered. I know that they are not imported but the
test at least documents it.
- Default values for ParmVarDecls were also uncovered.
- Importing bitfield FieldDecls were imported correctly.
Reviewed By: martong, shafik
Differential Revision: https://reviews.llvm.org/D99576
We do the import of the member enum specialization similarly to as we do
with member CXXRecordDecl specialization.
Differential Revision: https://reviews.llvm.org/D99421
This moves the two tests we have for importing Objective-C nodes to their own
file. The motivation is that this means I can add more Objective-C tests without
making the compilation time of ASTImporterTest even longer. Also it seems nice
to separate the Apple-specific stuff from the ASTImporter test.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D99162
Update ASTImporter to import value of FieldDecl::getCapturedVLAType.
Reviewed By: shafik, martong
Differential Revision: https://reviews.llvm.org/D99062
Objective-C apparently allows name conflicts between instance and class
properties, so this is valid code:
```
@protocol DupProp
@property (class, readonly) int prop;
@property (readonly) int prop;
@end
```
The ASTImporter however isn't aware of this and will consider the two properties
as if they are the same property because it just compares their name and types.
This causes that when importing both properties we only end up with one property
(whatever is imported first from what I can see).
Beside generating a different AST this also leads to a bunch of asserts and
crashes as we still correctly import the two different getters for both
properties (the import code for methods does the correct check where it
differentiated between instance and class methods). As one of the setters will
not have its associated ObjCPropertyDecl imported, any call to
`ObjCMethodDecl::findPropertyDecl` will just lead to an assert or crash.
Fixes rdar://74322659
Reviewed By: shafik, kastiglione
Differential Revision: https://reviews.llvm.org/D99077
It is possible that imported `SourceLocExpr` can cause not expected behavior (if `__builtin_LINE()` is used together with `__LINE__` for example) but still it may be worth to import these because some projects use it.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D98876
After the import, we did not copy the `TSCSpec`.
This commit resolves that.
Reviewed By: balazske
Differential Revision: https://reviews.llvm.org/D98707
The idiom:
```
DeclContext::lookup_result R = DeclContext::lookup(Name);
for (auto *D : R) {...}
```
is not safe when in the loop body we trigger deserialization from an AST file.
The deserialization can insert new declarations in the StoredDeclsList whose
underlying type is a vector. When the vector decides to reallocate its storage
the pointer we hold becomes invalid.
This patch replaces a SmallVector with an singly-linked list. The current
approach stores a SmallVector<NamedDecl*, 4> which is around 8 pointers.
The linked list is 3, 5, or 7. We do better in terms of memory usage for small
cases (and worse in terms of locality -- the linked list entries won't be near
each other, but will be near their corresponding declarations, and we were going
to fetch those memory pages anyway). For larger cases: the vector uses a
doubling strategy for reallocation, so will generally be between half-full and
full. Let's say it's 75% full on average, so there's N * 4/3 + 4 pointers' worth
of space allocated currently and will be 2N pointers with the linked list. So we
break even when there are N=6 entries and slightly lose in terms of memory usage
after that. We suspect that's still a win on average.
Thanks to @rsmith!
Differential revision: https://reviews.llvm.org/D91524
ASTContext were only passed to the StmtPrinter in some places, while it
is always available in DeclPrinter. The context is used by StmtPrinter to better
print statements in some cases, like printing constants as written.
Differential Revision: https://reviews.llvm.org/D97043
This change enables the builtin function declarations
in clang driver by default using the Tablegen solution
along with the implicit include of 'opencl-c-base.h'
header.
A new flag '-cl-no-stdinc' disabling all default
declarations and header includes is added. If any other
mechanisms were used to include the declarations (e.g.
with -Xclang -finclude-default-header) and the new default
approach is not sufficient the, `-cl-no-stdinc` flag has
to be used with clang to activate the old behavior.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D96515
The assertion can happen if ASTImporter imports a CXXRecordDecl in a template
and then imports another redeclaration of this declaration, while the first import is in progress.
The process of first import did not set the "described template" yet
and the second import finds the first declaration at setting the injected types.
Setting the injected type requires in the assertion that the described template is set.
The exact assertion was:
clang/lib/AST/ASTContext.cpp:4411:
clang::QualType clang::ASTContext::getInjectedClassNameType(clang::CXXRecordDecl*, clang::QualType) const:
Assertion `NeedsInjectedClassNameType(Decl)' failed.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D94067
This allows ASTs to be merged when they contain GenericSelectionExpr
nodes (this is _Generic from C11). This is needed, for example, for
CTU analysis of C code that makes use of _Generic, like the Linux
kernel.
The node is already supported in the AST, but it didn't have a matcher
in ASTMatchers. So, this change adds the matcher and adds support to
ASTImporter. Additionally, this change adds support for structural
equivalence of _Generic in the AST.
Reviewed By: martong, aaron.ballman
Differential Revision: https://reviews.llvm.org/D92600
The import of a typedefs with an attribute uses clang::Decl::setAttrs().
But that needs the ASTContext which we can get only from the
TranslationUnitDecl. But we can get the TUDecl only thourgh the
DeclContext, which is not set by the time of the setAttrs call.
Fix: import the attributes only after the DC is surely imported.
Btw, having the attribute import initiated from GetImportedOrCreateDecl was
fundamentally flawed. Now that is implicitly fixed.
Differential Revision: https://reviews.llvm.org/D92962
CXXDeductionGuideDecl with a local typedef has its own copy of the
TypedefDecl with the CXXDeductionGuideDecl as the DeclContext of that
TypedefDecl.
```
template <typename T> struct A {
typedef T U;
A(U, T);
};
A a{(int)0, (int)0};
```
Related discussion on cfe-dev:
http://lists.llvm.org/pipermail/cfe-dev/2020-November/067252.html
Without this fix, when we import the CXXDeductionGuideDecl (via
VisitFunctionDecl) then before creating the Decl we must import the
FunctionType. However, the first parameter's type is the afore mentioned
local typedef. So, we then start importing the TypedefDecl whose
DeclContext is the CXXDeductionGuideDecl itself. The infinite loop is
formed.
```
#0 clang::ASTNodeImporter::VisitCXXDeductionGuideDecl(clang::CXXDeductionGuideDecl*) clang/lib/AST/ASTImporter.cpp:3543:0
#1 clang::declvisitor::Base<std::add_pointer, clang::ASTNodeImporter, llvm::Expected<clang::Decl*> >::Visit(clang::Decl*) /home/egbomrt/WORK/llvm5/build/debug/tools/clang/include/clang/AST/DeclNodes.inc:405:0
#2 clang::ASTImporter::ImportImpl(clang::Decl*) clang/lib/AST/ASTImporter.cpp:8038:0
#3 clang::ASTImporter::Import(clang::Decl*) clang/lib/AST/ASTImporter.cpp:8200:0
#4 clang::ASTImporter::ImportContext(clang::DeclContext*) clang/lib/AST/ASTImporter.cpp:8297:0
#5 clang::ASTNodeImporter::ImportDeclContext(clang::Decl*, clang::DeclContext*&, clang::DeclContext*&) clang/lib/AST/ASTImporter.cpp:1852:0
#6 clang::ASTNodeImporter::ImportDeclParts(clang::NamedDecl*, clang::DeclContext*&, clang::DeclContext*&, clang::DeclarationName&, clang::NamedDecl*&, clang::SourceLocation&) clang/lib/AST/ASTImporter.cpp:1628:0
#7 clang::ASTNodeImporter::VisitTypedefNameDecl(clang::TypedefNameDecl*, bool) clang/lib/AST/ASTImporter.cpp:2419:0
#8 clang::ASTNodeImporter::VisitTypedefDecl(clang::TypedefDecl*) clang/lib/AST/ASTImporter.cpp:2500:0
#9 clang::declvisitor::Base<std::add_pointer, clang::ASTNodeImporter, llvm::Expected<clang::Decl*> >::Visit(clang::Decl*) /home/egbomrt/WORK/llvm5/build/debug/tools/clang/include/clang/AST/DeclNodes.inc:315:0
#10 clang::ASTImporter::ImportImpl(clang::Decl*) clang/lib/AST/ASTImporter.cpp:8038:0
#11 clang::ASTImporter::Import(clang::Decl*) clang/lib/AST/ASTImporter.cpp:8200:0
#12 llvm::Expected<clang::TypedefNameDecl*> clang::ASTNodeImporter::import<clang::TypedefNameDecl>(clang::TypedefNameDecl*) clang/lib/AST/ASTImporter.cpp:165:0
#13 clang::ASTNodeImporter::VisitTypedefType(clang::TypedefType const*) clang/lib/AST/ASTImporter.cpp:1304:0
#14 clang::TypeVisitor<clang::ASTNodeImporter, llvm::Expected<clang::QualType> >::Visit(clang::Type const*) /home/egbomrt/WORK/llvm5/build/debug/tools/clang/include/clang/AST/TypeNodes.inc:74:0
#15 clang::ASTImporter::Import(clang::QualType) clang/lib/AST/ASTImporter.cpp:8071:0
#16 llvm::Expected<clang::QualType> clang::ASTNodeImporter::import<clang::QualType>(clang::QualType const&) clang/lib/AST/ASTImporter.cpp:179:0
#17 clang::ASTNodeImporter::VisitFunctionProtoType(clang::FunctionProtoType const*) clang/lib/AST/ASTImporter.cpp:1244:0
#18 clang::TypeVisitor<clang::ASTNodeImporter, llvm::Expected<clang::QualType> >::Visit(clang::Type const*) /home/egbomrt/WORK/llvm5/build/debug/tools/clang/include/clang/AST/TypeNodes.inc:47:0
#19 clang::ASTImporter::Import(clang::QualType) clang/lib/AST/ASTImporter.cpp:8071:0
#20 llvm::Expected<clang::QualType> clang::ASTNodeImporter::import<clang::QualType>(clang::QualType const&) clang/lib/AST/ASTImporter.cpp:179:0
#21 clang::QualType clang::ASTNodeImporter::importChecked<clang::QualType>(llvm::Error&, clang::QualType const&) clang/lib/AST/ASTImporter.cpp:198:0
#22 clang::ASTNodeImporter::VisitFunctionDecl(clang::FunctionDecl*) clang/lib/AST/ASTImporter.cpp:3313:0
#23 clang::ASTNodeImporter::VisitCXXDeductionGuideDecl(clang::CXXDeductionGuideDecl*) clang/lib/AST/ASTImporter.cpp:3543:0
```
The fix is to first create the TypedefDecl and only then start to import
the DeclContext.
Basically, we could do this during the import of all other Decls (not
just for typedefs). But it seems, there is only one another AST
construct that has a similar cycle: a struct defined as a function
parameter:
```
int struct_in_proto(struct data_t{int a;int b;} *d);
```
In that case, however, we had decided to return simply with an error
back then because that seemed to be a very rare construct.
Differential Revision: https://reviews.llvm.org/D92209
CXXDeductionGuideDecl is a FunctionDecl, but its constructor should be called
appropriately, at least to set the kind variable properly.
Differential Revision: https://reviews.llvm.org/D92109
The test case isn't using the AST matchers for all checks as there doesn't seem to be support for
matching NonTypeTemplateParmDecl default arguments. Otherwise this is simply importing the
default arguments.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D92106
The test case isn't using the AST matchers for all checks as there doesn't seem to be support for
matching TemplateTypeParmDecl default arguments. Otherwise this is simply importing the
default arguments.
Also updates several LLDB tests that now as intended omit the default template
arguments of several std templates.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D92103
Same idea as in D92103 and D92106, but I realised after creating those reviews that there are
also TemplateTemplateParmDecls that can have default arguments, so here's hopefully the
last patch for default template arguments.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D92119
When importing a `ClassTemplateSpecializationDecl` definition into a TU with a matching
`ClassTemplateSpecializationDecl` definition and a more recent forward decl, the ASTImporter
currently will call `MapImported()` for the definitions, but will return the forward declaration
from the `ASTImporter::Import()` call.
This is triggering some assertions in LLDB when we try to fully import some DeclContexts
before we delete the 'From' AST. The returned 'To' Decl before this patch is just the most recent
forward decl but that's not the Decl with the definition to which the ASTImporter will import
the child declarations.
This patch just changes that the ASTImporter returns the definition that the imported Decl was
merged with instead of the found forward declaration.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D92016
Update the ASTNodeTraverser to dump only nodes spelled in source. There
are only a few which need to be handled, but Decl nodes for which
isImplicit() is true are handled together.
Update the RAV instances used in ASTMatchFinder to ignore the nodes too.
As with handling of template instantiations, it is necessary to allow
the RAV to process the implicit nodes because they need to be visitable
before the first traverse() matcher is encountered. An exception to
this is in the MatchChildASTVisitor, because we sometimes wish to make a
node matchable but make its children not-matchable. This is the case
for defaulted CXXMethodDecls for example.
Extend TransformerTests to illustrate the kinds of problems that can
arise when performing source code rewriting due to matching implicit
nodes.
This change accounts for handling nodes not spelled in source when using
direct matching of nodes, and when using the has() and hasDescendant()
matchers. Other matchers such as
cxxRecordDecl(hasMethod(cxxMethodDecl())) still succeed for
compiler-generated methods for example after this change. Updating the
implementations of hasMethod() and other matchers is for a follow-up
patch.
Differential Revision: https://reviews.llvm.org/D90982
Continue to dump and match on explicit template specializations, but
omit explicit instantiation declarations and definitions.
Differential Revision: https://reviews.llvm.org/D90763
Summary:
IgnoreUnlessSpelledInSource mode should ignore these because they are
not written in the source. This matters for example when trying to
replace types or values which are templated. The new test in
TransformerTest.cpp in this commit demonstrates the problem.
In existing matcher code, users can write
`unless(isInTemplateInstantiation())` or `unless(isInstantiated())` (the
user must know which to use). The point of the
TK_IgnoreUnlessSpelledInSource mode is to allow the novice to avoid such
details. This patch changes the IgnoreUnlessSpelledInSource mode to
skip over implicit template instantiations.
This patch does not change the TK_AsIs mode.
Note: An obvious attempt at an alternative implementation would simply
change the shouldVisitTemplateInstantiations() in ASTMatchFinder.cpp to
return something conditional on the operational TraversalKind. That
does not work because shouldVisitTemplateInstantiations() is called
before a possible top-level traverse() matcher changes the operational
TraversalKind.
Reviewers: sammccall, aaron.ballman, gribozavr2, ymandel, klimek
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80961
Summary:
Skip over elidable nodes, and ensure that intermediate
CXXFunctionalCastExpr nodes are also skipped if they are semantic.
Reviewers: klimek, ymandel
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82278
Update clang-tools-extra, clang/tools, clang/unittests to migrate from
`SourceManager::getBuffer`, which returns an always dereferenceable
`MemoryBuffer*`, to `getBufferOrNone` or `getBufferOrFake`, both of
which return a `MemoryBufferRef`, depending on whether the call site was
checking for validity of the buffer. No functionality change intended.
Differential Revision: https://reviews.llvm.org/D89416
During the import of attributes we forgot to set the spelling list
index. This caused a segfault when we wanted to traverse the AST
(e.g. by the dump() method).
Differential Revision: https://reviews.llvm.org/D89318
During the import of FormatAttrs we forgot to import the type (e.g
`__scanf__`) of the attribute. This caused a segfault when we wanted to
traverse the AST (e.g. by the dump() method).
Differential Revision: https://reviews.llvm.org/D89319
There are several `::IsStructurallyEquivalent` overloads for Decl subclasses
that are used for comparing declarations. There is also one overload that takes
just two Decl pointers which ends up queuing the passed Decls to be later
compared in `CheckKindSpecificEquivalence`.
`CheckKindSpecificEquivalence` implements the dispatch logic for the different
Decl subclasses. It is supposed to hand over the queued Decls to the
subclass-specific `::IsStructurallyEquivalent` overload that will actually
compare the Decl instance. It also seems to implement a few pieces of actual
node comparison logic inbetween the dispatch code.
This implementation causes that the different overloads of
`::IsStructurallyEquivalent` do different (and sometimes no) comparisons
depending on which overload of `::IsStructurallyEquivalent` ends up being
called.
For example, if I want to compare two FieldDecl instances, then I could either
call the `::IsStructurallyEquivalent` with `Decl *` or with `FieldDecl *`
parameters. The overload that takes FieldDecls is doing a correct comparison.
However, the `Decl *` overload just queues the Decl pair.
`CheckKindSpecificEquivalence` has no dispatch logic for `FieldDecl`, so it
always returns true and never does any actual comparison.
On the other hand, if I try to compare two FunctionDecl instances the two
possible overloads of `::IsStructurallyEquivalent` have the opposite behaviour:
The overload that takes `FunctionDecl` pointers isn't comparing the names of the
FunctionDecls while the overload taking a plain `Decl` ends up comparing the
function names (as the comparison logic for that is implemented in
`CheckKindSpecificEquivalence`).
This patch tries to make this set of functions more consistent by making
`CheckKindSpecificEquivalence` a pure dispatch function without any
subclass-specific comparison logic. Also the dispatch logic is now autogenerated
so it can no longer miss certain subclasses.
The comparison code from `CheckKindSpecificEquivalence` is moved to the
respective `::IsStructurallyEquivalent` overload so that the comparison result
no longer depends if one calls the `Decl *` overload or the overload for the
specific subclass. The only difference is now that the `Decl *` overload is
queuing the parameter while the subclass-specific overload is directly doing the
comparison.
`::IsStructurallyEquivalent` is an implementation detail and I don't think the
behaviour causes any bugs in the current implementation (as carefully calling
the right overload for the different classes works around the issue), so the
test for this change is that I added some new code for comparing `MemberExpr`.
The new comparison code always calls the dispatching overload and it previously
failed as the dispatch didn't support FieldDecls.
Reviewed By: martong, a_sidorin
Differential Revision: https://reviews.llvm.org/D87619
Right now the ASTImporter assumes for most Expr nodes that they are always equal
which leads to non-compatible declarations ending up being merged. This patch
adds the basic framework for comparing Stmts (and with that also Exprs) and
implements the custom checks for a few Stmt subclasses. I'll implement the
remaining subclasses in follow up patches (mostly because there are a lot of
subclasses and some of them require further changes like having GNU language in
the testing framework)
The motivation for this is that in LLDB we try to import libc++ source code and
some of the types we are importing there contain expressions (e.g. because they
use `enable_if<expr>`), so those declarations are currently merged even if they
are completely different (e.g. `enable_if<value> ...` and `enable_if<!value>
...` are currently considered equal which is clearly not true).
Reviewed By: martong, balazske
Differential Revision: https://reviews.llvm.org/D87444
Decl::dump is primarily used for debugging to visualise the current state of a
declaration. Usually Decl::dump just displays the current state of the Decl and
doesn't actually change any of its state, however since commit
457226e02a the method actually started loading
additional declarations from the ExternalASTSource. This causes that calling
Decl::dump during a debugging session now actually does permanent changes to the
AST and will cause the debugged program run to deviate from the original run.
The change that caused this behaviour is the addition of
`hasConstexprDestructor` (which is called from the TextNodeDumper) which
performs a lookup into the current CXXRecordDecl to find the destructor. All
other similar methods just return their respective bit in the DefinitionData
(which obviously doesn't have such side effects).
This just changes the node printer to emit "unknown_constexpr" in case a
CXXRecordDecl is dumped that could potentially call into the ExternalASTSource
instead of the usually empty string/"constexpr". For CXXRecordDecls that can
safely be dumped the old behaviour is preserved
Reviewed By: bruno
Differential Revision: https://reviews.llvm.org/D80878
NamedDecl::printName will print the pretty-printed name of the entity, which
is not what we want here (we should print "enum { e };" instead of "enum
(unnamed enum at input.cc:1:5) { e };").
For now only DecompositionDecl and MDGuidDecl have an overloaded printName so
this does not result in any functional change, but this change is needed since
I will be adding overloads to better handle unnamed entities in diagnostics.
Summary:
The purpose of this change is to do a small refactoring of code in
ASTImporterTest.cpp by moving it to ASTImporterFixtures.h in order to
support tests of downstream custom types and minimize the "living
downstream burden" of frequent integrations from community to a
downstream repo that implements custom AST import tests.
Reviewers: martong, a.sidorin, shafik
Reviewed By: martong
Subscribers: balazske, dkrupp, bjope, rnkovacs, teemperor, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83970
Summary:
If no valid interface definition was found previously we would crash.
With this change instead we just print `<<error-type>>` in place
of the NULL interface. In the future this could be improved by
saving the invalid interface's name and using that.
Reviewers: sammccall, gribozavr
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83513
Summary:
Import declarations in correct order if a class contains
multiple redundant friend (type or decl) declarations.
If the order is incorrect this could cause false structural
equivalences and wrong declaration chains after import.
Reviewers: a.sidorin, shafik, a_sidorin
Reviewed By: shafik
Subscribers: dkrupp, Szelethus, gamesh411, teemperor, martong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75740
In general there is no way to get to the ASTContext from most AST nodes
(Decls are one of the exception). This will be a problem when implementing
the rest of APValue::dump since we need the ASTContext to dump some kinds of
APValues.
The ASTContext* in ASTDumper and TextNodeDumper is not always non-null.
This is because we still want to be able to use the various dump() functions
in a debugger.
No functional changes intended.
Reverted in fcf4d5e449 since a few dump()
functions in lldb where missed.
In general there is no way to get to the ASTContext from most AST nodes
(Decls are one of the exception). This will be a problem when implementing
the rest of APValue::dump since we need the ASTContext to dump some kinds of
APValues.
The ASTContext* in ASTDumper and TextNodeDumper is not always
non-null. This is because we still want to be able to use the various
dump() functions in a debugger.
No functional changes intended.
Summary:
This change adds a matching test case for the recent bug fix to
VisitFriendDecl in ASTImporterLookup.cpp.
See https://reviews.llvm.org/D82882 for details.
Reviewers: martong, a.sidorin, shafik
Reviewed By: martong
Subscribers: rnkovacs, teemperor, cfe-commits, dkrupp
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83006
outer levels as retained rather than omitting their arguments.
This better reflects what's going on (we're performing a substitution
while still inside a template), and in theory is more correct, but I've
not found a testcase where it matters in practice (largely because we
don't allow alias templates to be declared inside a function).
Fixed AST dumping of SubstNonTypeTemplateParm[Pack]Expr to demonstrate
that we're properly substituting through dependent alias templates. (We
can't deduce properly through these yet, but we can at least produce the
right input to template argument deduction.)
No functionality change intended.
Summary:
The new SVE builtin type __SVBFloat16_t` is used to represent scalable
vectors of bfloat elements.
Reviewers: sdesmalen, efriedma, stuij, ctetreau, shafik, rengolin
Subscribers: tschuett, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81304
Summary:
I think we would be better off with tests explicitly specifying the
language mode. Right now Lang_C means C99, but reads as "any C version",
or as "unspecified C version".
I also changed '-std=c++98' to '-std=c++03' because they are aliases (so
there is no difference in practice), because Clang implements C++03
rules in practice, and because 03 makes a nice sortable progression
between 03, 11, 14, 17, 20.
Reviewers: shafik, hlopko
Reviewed By: hlopko
Subscribers: jfb, martong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81000
Summary:
unittests/AST/Language.h defines some helpers that we would like to
reuse in other tests, for example, in tests for syntax trees.
Reviewers: sammccall
Reviewed By: sammccall
Subscribers: mgorny, martong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80792
Summary:
Declaring these helpers in the ast_matcher namespace in the clangAST
unit test seems inappropriate -- neither these helpers, nor clangAST have
anything to do with AST matchers. Therefore, I moved these helpers to
the clang namespace.
Declaring another typedef called "ArgVector" is not a good idea -- we
already have both "ArgVector", "ArgsVector", and "ArgList". I expanded
it into the underlying type.
Declaring another enum called "Language" is not a good idea because we
arleady have the "clang::Language" enum. I renamed it to
"TestLanguage".
Similarly, I renamed "getBasicRunOptionsForLanguage" to
"getCommandLineArgsForTesting" to explain the semantics better (what are
"run options"?) and not repeat types in the function name
("ForLanguage").
Reviewers: shafik, rengolin, sammccall
Reviewed By: sammccall
Subscribers: gribozavr2, sammccall, martong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D80786
Summary:
Similar to property, we print the containing interface decl as the
nested name specifier for ivar; otherwise we will get "::ivar_name".
this would fix an assertion crash in clangd: https://github.com/clangd/clangd/issues/365
Reviewers: sammccall
Reviewed By: sammccall
Subscribers: ilya-biryukov, kadircet, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D79576
Link to LLVMTestingSupport via target_link_libraries() instead of
clang_target_link_libraries(). The latter is ineffective if tests
are linked to libclang.so. This solution is consistent with what other
tests do.
Summary:
Overwritten file buffers are at the moment ignored when importing and
instead only the underlying file buffer is imported.
This patch fixes this by not going to the underlying file entry if the file has
an overwritten buffer.
Reviewers: martong, a.sidorin, shafik
Reviewed By: martong, shafik
Subscribers: rnkovacs
Differential Revision: https://reviews.llvm.org/D78086
In ImportContext(…) we may call into CompleteDecl(…) which if FromRecrord is not
defined will start the definition of a ToRecord but from what I can tell at least
one of the paths though here don't ensure we complete the definition.
For a RecordDecl this can be problematic since this means we won’t import base
classes and we won’t have any of the methods or types we inherit from these bases.
Differential Revision: https://reviews.llvm.org/D78000
Summary:
This patch adds support for importing fixed point literals, following
up to https://reviews.llvm.org/D46915 specifically for importing AST.
Reviewers: martong, leonardchan, ebevhan, a.sidorin, shafik
Reviewed By: martong
Subscribers: balazske, rnkovacs, teemperor, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77721
This reverts commit 97aa593a83 as it
causes problems (PR45453) https://reviews.llvm.org/D77574#1966321.
This additionally adds an explicit reference to FrontendOpenMP to
clang-tidy where ASTMatchers is used.
This is hopefully just a temporary solution. The dependence on
`FrontendOpenMP` from `ASTMatchers` should be handled by CMake
implicitly, not us explicitly.
Reviewed By: aheejin
Differential Revision: https://reviews.llvm.org/D77666
Summary:
ASTMatchers is used in various places and it now exposes the
LLVMFrontendOpenMP library to its users without them needing to depend
on it explicitly.
Reviewers: lebedev.ri
Subscribers: mgorny, yaxunl, bollu, guansong, martong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77574
Move the listing of allowed clauses per OpenMP directive to the new
macro file in `llvm/Frontend/OpenMP`. Also, use a single generic macro
that specifies the directive and one allowed clause explicitly instead
of a dedicated macro per directive.
We save 800 loc and boilerplate for all new directives/clauses with no
functional change. We also need to include the macro file only once and
not once per directive.
Depends on D77112.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D77113
Summary: Only for the readability reasons.
Reviewers: gribozavr
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76120
Summary:
This patch removes a call to the old ASTUnit::findFileRegionDecls and
replaces it with ast matchers.
Reviewers: gribozavr, gribozavr2
Reviewed By: gribozavr2
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76121
One of the defining features of the SVE ACLE types is that they
are "sizeless"; see the SVE ACLE spec:
https://developer.arm.com/docs/100987/0000/arm-c-language-extensions-for-sve
or the email message:
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062523.html
for a fuller definition of what that means.
This patch adds two associated type queries:
- isSizelessBuiltinType asks specifically about types that are built
into clang. It is effectively an enum range check.
- isSizelessType instead tests for any type that has the "sizeless" type
property. At the moment it only returns true for the built-in types,
but it seems better not to hard-code that assumption throughout
the codebase. (E.g. we could in principle support some form of
user-defined sizeless types in future. Even if that seems unlikely
and never actually happens, the possibility at least exists.)
Differential Revision: https://reviews.llvm.org/D75570
Summary:
ASTImporter makes now difference between variable templates
with same name in different translation units if not visible
outside.
Reviewers: a.sidorin, shafik, a_sidorin
Reviewed By: a_sidorin
Subscribers: dkrupp, Szelethus, gamesh411, teemperor, martong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75732
Summary:
It is not enough to clone the attributes at import.
They can contain reference to objects that should be imported.
This work is done now for AlignedAttr.
Reviewers: martong, a.sidorin, shafik
Reviewed By: shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, teemperor, martong, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75048
Summary:
When importing the main FileID the ASTImporter currently gives it no include location. This means
that any SourceLocations produced for this FileID look to Clang as if they are coming from the
main FileID (as the main FileID has no include location).
Clang seems to expect that there is only one main FileID in one translation unit (which makes sense
during normal compilation), so this behavior leads to several problems when producing diagnostics,
one being that when calling `SourceManager::isBeforeInTranslationUnit` on two SourceLocations
that come from two different ASTContext instances, Clang fails to sort the SourceLocations as
the include chains of the FileIDs don't end up in a single FileID. This causes that Clang crashes
with "Unsortable locations found" in this function.
This patch gives any imported main FileIDs the main FileID of the To ASTContext as its include
location. This allows Clang to sort all imported SourceLocations as now all include chains point
to the main FileID of the To ASTContext. The exact include location is currently set to the start
of the To main file (just because that should always be a valid SourceLocation).
Reviewers: martong, a_sidorin, a.sidorin, shafik, balazske
Reviewed By: martong, a_sidorin, shafik
Subscribers: balazske, rnkovacs, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74542
Summary:
ASTImporter makes now difference between C++11 scoped enums with same
name in different translation units if these are not visible outside.
Enum declarations are linked into decl chain correctly.
Reviewers: martong, a.sidorin, shafik, a_sidorin, teemperor
Reviewed By: shafik, a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, teemperor, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74554
DynTypedNode and ASTNodeKind are implemented as part of the clang AST
library, which uses the main clang namespace. There doesn't seem to be a
need for this extra level of namespacing.
I left behind aliases in the ast_type_traits namespace for out of tree
clients of these APIs. To provide aliases for the enumerators, I used
this pattern:
namespace ast_type_traits {
constexpr TraversalKind TK_AsIs = ::clang::TK_AsIs;
}
I think the typedefs will be useful for migration, but we might be able
to drop these enumerator aliases.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D74499
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
In the past we had to use DeclContext::makeDeclVisibleInContext to make
friend declarations available for subsequent lookup calls and this way
we could chain (redecl) the structurally equivalent decls.
By doing this we created an AST that improperly made declarations
visible in some contexts, so the AST was malformed.
Since we use the importer specific lookup this is no longer necessary,
because with that we can find every previous nodes.
Reviewers: balazske, a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, teemperor, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71020
Summary:
In the past we had to use DeclContext::makeDeclVisibleInContext to make
friend declarations available for subsequent lookup calls and this way
we could chain (redecl) the structurally equivalent decls.
By doing this we created an AST that improperly made declarations
visible in some contexts, so the AST was malformed.
Since we use the importer specific lookup this is no longer necessary,
because with that we can find every previous nodes.
Reviewers: balazske, a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, teemperor, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71020
Summary:
Support functions with placeholder return types even in cases when the type is
declared in the body of the function.
Example: auto f() { struct X{}; return X(); }
Reviewers: balazske, a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, teemperor, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70819
Summary:
When Sema encounters a ObjCMethodDecl definition it declares the implicit parameters for the ObjCMethodDecl.
When importing such a method with the ASTImporter we need to do the same for the imported method
otherwise we will crash when generating code (where CodeGen expects that this was called by Sema).
Note I had to implement Objective-C[++] support in Language.cpp as this is the first test for Objective-C and this
would otherwise just hit this 'not implemented' assert when running the unit test.
Reviewers: martong, a.sidorin, shafik
Reviewed By: martong
Subscribers: rnkovacs, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71112
Summary:
ASTImporter makes now difference between class templates with same
name in different translation units if these are not visible outside.
Reviewers: martong, a.sidorin, shafik
Reviewed By: martong
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, teemperor, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67543
Summary:
This doesn't cover decls in diagnostics, which use NamedDecl::getNameForDiagnostic().
(That should also be fixed later I think).
This covers some cases of https://github.com/clangd/clangd/issues/76
(hover, but not outline or sighelp)
Reviewers: hokein
Subscribers: ilya-biryukov, jkorous, arphaman, kadircet, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70236
Summary:
Use a forward declaration of DataLayout instead of including
DataLayout.h in clangs TargetInfo.h. This reduces include
dependencies toward DataLayout.h (and other headers such as
DerivedTypes.h, Type.h that is included by DataLayout.h).
Needed to move implemantation of TargetInfo::resetDataLayout
from TargetInfo.h to TargetInfo.cpp.
Reviewers: rnk
Reviewed By: rnk
Subscribers: jvesely, nhaehnle, cfe-commits, llvm-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69262
llvm-svn: 375438
Fixes a leak introduced in r372903, detected on the ASan bot.
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/35430/steps/check-clang%20asan/logs/stdio
Direct leak of 192 byte(s) in 1 object(s) allocated from:
#0 0x561d88 in operator new(unsigned long) /b/sanitizer-x86_64-linux-fast/build/llvm-project/compiler-rt/lib/asan/asan_new_delete.cc:105
#1 0x1a48779 in clang::ItaniumMangleContext::create(clang::ASTContext&, clang::DiagnosticsEngine&) /b/sanitizer-x86_64-linux-fast/build/llvm-project/clang/lib/AST/ItaniumMangle.cpp:5134:10
#2 0xdff000 in Decl_AsmLabelAttr_Test::TestBody() /b/sanitizer-x86_64-linux-fast/build/llvm-project/clang/unittests/AST/DeclTest.cpp:97:23
llvm-svn: 372925
LLDB synthesizes decls using asm labels. These decls cannot have a mangle
different than the one specified in the label name. I.e., the '\01' prefix
should not be added.
Fixes an expression evaluation failure in lldb's TestVirtual.py on iOS.
rdar://45827323
Differential Revision: https://reviews.llvm.org/D67774
llvm-svn: 372903
Reverted in r372880 due to the test failure.
Also contains a fix that adjusts printQualifiedName to return the same results as before in
case of anonymous function locals and parameters.
llvm-svn: 372889
Summary:
To be used in clangd, e.g. in D66647.
Currently the alternative to this function is doing string manipulation on results of `printQualifiedName`, which is
hard-to-impossible to get right in presence of template arguments.
Reviewers: kadircet, aaron.ballman
Reviewed By: kadircet, aaron.ballman
Subscribers: aaron.ballman, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67825
llvm-svn: 372863
Summary:
In this patch we provide additional and comprehensive tests for the ODR
handling strategies. This is the continuation of
https://reviews.llvm.org/D59692.
Reviewers: shafik, a_sidorin, balazske, a.sidorin
Subscribers: mgorny, rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66951
llvm-svn: 372564
Summary:
ASTImporter makes now difference between function templates with same
name in different translation units if these are not visible outside.
Reviewers: martong, a.sidorin, shafik, a_sidorin
Reviewed By: a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67490
llvm-svn: 371820
Summary:
ASTImporter makes now difference between typedefs and type aliases
with same name in different translation units
if these are not visible outside.
Reviewers: martong, a.sidorin, shafik, a_sidorin
Reviewed By: martong, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64480
llvm-svn: 370903
Summary:
The structural equivalence check stores now pairs of nodes in the
'from' and 'to' context instead of only the node in 'from' context
and a corresponding one in 'to' context. This is needed to handle
cases when a Decl in the 'from' context is to be compared with
multiple Decls in the 'to' context.
Reviewers: martong, a_sidorin
Reviewed By: martong, a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66538
llvm-svn: 370639
Summary:
Correct order of fields and indirect fields in imported RecordDecl
is needed for correct work of record layout calculations.
Reviewers: martong, a.sidorin, shafik, a_sidorin
Reviewed By: martong, a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66866
llvm-svn: 370621
Summary:
Consider this code:
```
void f() {
auto L0 = [](){};
auto L1 = [](){};
}
```
First we import `L0` then `L1`. Currently we end up having only one
CXXRecordDecl for the two different lambdas. And that is a problem if
the body of their op() is different. This happens because when we import
`L1` then lookup finds the existing `L0` and since they are structurally
equivalent we just map the imported L0 to be the counterpart of L1.
We have the same problem in this case:
```
template <typename F0, typename F1>
void f(F0 L0 = [](){}, F1 L1 = [](){}) {}
```
In StructuralEquivalenceContext we could distinquish lambdas only by
their source location in these cases. But we the lambdas are actually
structrually equivalent they differn only by the source location.
Thus, the solution is to disable lookup completely if the decl in
the "from" context is a lambda.
However, that could have other problems: what if the lambda is defined
in a header file and included in several TUs? I think we'd have as many
duplicates as many includes we have. I think we could live with that,
because the lambda classes are TU local anyway, we cannot just access
them from another TU.
Reviewers: a_sidorin, a.sidorin, shafik
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66348
llvm-svn: 370461