Only attempt shutdown if lpReserved is NULL. The Windows documentation
states:
When handling DLL_PROCESS_DETACH, a DLL should free resources such as
heap memory only if the DLL is being unloaded dynamically (the
lpReserved parameter is NULL). If the process is terminating (the
lpReserved parameter is non-NULL), all threads in the process except the
current thread either have exited already or have been explicitly
terminated by a call to the ExitProcess function, which might leave some
process resources such as heaps in an inconsistent state. In this case,
it is not safe for the DLL to clean up the resources. Instead, the DLL
should allow the operating system to reclaim the memory.
Differential Revision: https://reviews.llvm.org/D96750
This patch limits the number of dispatch buffers (used for
loop worksharing construct) to between 1 and 4096.
Differential Revision: https://reviews.llvm.org/D96749
This patch adds Linalg named ops for various types of integer matmuls.
Due to limitations in the tc spec/linalg-ods-gen ops cannot be type
polymorphic, so this instead creates new ops (improvements to the
methods for defining Linalg named ops are underway with a prototype at
https://github.com/stellaraccident/mlir-linalgpy).
To avoid the necessity of directly referencing these many new ops, this
adds additional methods to ContractionOpInterface to allow classifying
types of operations based on their indexing maps.
Reviewed By: nicolasvasilache, mravishankar
Differential Revision: https://reviews.llvm.org/D97006
operands[2] can be nullptr here. I'm not able to build a lit test for
this because of the commutative reordering of operands. It's possible to
trigger this with a createOrFold<BroadcastOp> though.
Differential Revision: https://reviews.llvm.org/D97206
ICMP_NE predicates cannot be directly represented as constraint. But we
can use ICMP_UGT instead ICMP_NE for %x != 0.
See https://alive2.llvm.org/ce/z/XlLCsW
A previous patch moved the index versions. This moves the rest.
I also removed the custom lowering for VLEFF since we can now
do everything directly in the isel handling.
I had to update getLMUL to handle mask registers to index the
pseudo table correctly for VLE1/VSE1.
This is good for another 15K reduction in llc size.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D97097
This commit fixes a bug in affine fusion pipeline where an
incorrect fusion is performed despite a dealloc op is present
between a producer and a consumer. This is done by creating a
node for dealloc op in the MDG.
Reviewed By: bondhugula, dcaballe
Differential Revision: https://reviews.llvm.org/D97032
When compiling with ccache, compiler commands get split into smaller steps
and clang's default -Wunused-command-line-argument complains about unused
include directory arguments. In combination -Werror, compilation aborts.
If CMAKE_C_FLAGS contains -Wno-unused-command-line-argument or
-Wno-error=unused-command-line-argument, the latter flag is passed into the
build script.
This is a re-commit. The previous version was reverted because of failing
tests.
Differential Revision: https://reviews.llvm.org/D96762
If the call is readnone, then there may not be any MemoryAccess
associated with the call. Bail out in that case.
This fixes the issue reported at
https://reviews.llvm.org/D94376#2578312.
If a static assert has a message as the right side of an and condition, suggest a fix it of replacing the '&&' to ','.
`static_assert(cond && "Failed Cond")` -> `static_assert(cond, "Failed cond")`
This use case comes up when lazily replacing asserts with static asserts.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D89065
When cloning instructions during jump threading, also clone and
adapt any declared scopes. This is primarily important when
threading loop exits, because we'll end up with two dominating
scope declarations in that case (at least after additional loop
rotation). This addresses a loose thread from
https://reviews.llvm.org/rG2556b413a7b8#975012.
Differential Revision: https://reviews.llvm.org/D97154
Add -J to the f18 driver for compatibility with gfortran.
Add -module-dir for compatibility with the new flang driver.
They both set the output directory for .mod files and add the
directory to the search list. -module still only does the former.
Clean up the new driver test to match.
Differential Revision: https://reviews.llvm.org/D97164
In current implementation of `deviceRTLs`, we're using some functions
that are CUDA version dependent (if CUDA_VERSION < 9, it is one; otheriwse, it
is another one). As a result, we have to compile one bitcode library for each
CUDA version supported. A worse problem is forward compatibility. If a new CUDA
version is released, we have to update CMake file as well.
CUDA 9.2 has been released for three years. Instead of using various weird tricks
to make `deviceRTLs` work with different CUDA versions and still have forward
compatibility, we can simply drop support for CUDA 9.1 or lower version. It has at
least two benifits:
- We don't need to generate bitcode libraries for each CUDA version;
- Clang driver doesn't need to search for the bitcode lib based on CUDA version.
We can claim that starting from LLVM 12, OpenMP offloading on NVPTX target requires
CUDA 9.2+.
Reviewed By: jdoerfert, JonChesterfield
Differential Revision: https://reviews.llvm.org/D97003
Swapping the order of Init and MemberOrEllipsisLocation removes 8 bytes (20%) of padding on 64bit builds.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D97191
After updating clang driver to include standard
OpenCL headers implicitly, the output being checked
in the test does not match because the implicit
header contains other pragmas. The test does not
aim to use the header and therefore it has to be
updated passing '-cl-no-stdinc' command-line flag.
This fixes failing bots.
This reverts commit 6984e0d439.
While change by itself seems to be consistent with nullPointerConstant
docs of not matching "int i = 0;" but it's not clear why it's wrong and
9148302a2a author just forgot to update
the doc.
This change enables the builtin function declarations
in clang driver by default using the Tablegen solution
along with the implicit include of 'opencl-c-base.h'
header.
A new flag '-cl-no-stdinc' disabling all default
declarations and header includes is added. If any other
mechanisms were used to include the declarations (e.g.
with -Xclang -finclude-default-header) and the new default
approach is not sufficient the, `-cl-no-stdinc` flag has
to be used with clang to activate the old behavior.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D96515
This patch adds the following SHA3 Intrinsics:
vsha512hq_u64,
vsha512h2q_u64,
vsha512su0q_u64,
vsha512su1q_u64
veor3q_u8
veor3q_u16
veor3q_u32
veor3q_u64
veor3q_s8
veor3q_s16
veor3q_s32
veor3q_s64
vrax1q_u64
vxarq_u64
vbcaxq_u8
vbcaxq_u16
vbcaxq_u32
vbcaxq_u64
vbcaxq_s8
vbcaxq_s16
vbcaxq_s32
vbcaxq_s64
Note need to include +sha3 and +crypto when building from the front-end
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D96381
Enabled "bound_ctrl:1" and disabled "bound_ctrl:-1" syntax.
Corrected printer to output "bound_ctrl:1" instead of "bound_ctrl:0".
See bug 35397 for detailed issue description.
Differential Revision: https://reviews.llvm.org/D97048
Modified scalable vector types weren't correctly returned at link-time.
The previous behaviour was a FixedVectorType was constructed
when expecting a ScalableVectorType. This commit has added a regression
test which re-creates the failure as well as a fix.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D96953
This patch adds support for `-Xflang` in `flang-new`. The semantics are
identical to `-Xclang`.
With the addition of `-Xflang`, we can modify `-test-io` to be a
compiler-frontend only flag. This makes more sense, this flag is:
* very frontend specific
* to be used for development and testing only
* not to be exposed to the end user
Originally we added it to the compiler driver, `flang-new`, in order to
facilitate testing. With `-Xflang` this is no longer needed. Tests are
updated accordingly.
Differential Revision: https://reviews.llvm.org/D96864
Removes `CrossTranslationUnitContext::getImportedFromSourceLocation`
Removes the corresponding unit-test segment.
Introduces the `CrossTranslationUnitContext::getMacroExpansionContextForSourceLocation`
which will return the macro expansion context for an imported TU. Also adds a
few implementation FIXME notes where applicable, since this feature is
not implemented yet. This fact is also noted as Doxygen comments.
Uplifts a few CTU LIT test to match the current **incomplete** behavior.
It is a regression to some extent since now we don't expand any
macros in imported TUs. At least we don't crash anymore.
Note that the introduced function is already covered by LIT tests.
Eg.: Analysis/plist-macros-with-expansion-ctu.c
Reviewed By: balazske, Szelethus
Differential Revision: https://reviews.llvm.org/D94673
Removes the obsolete ad-hoc macro expansions during bugreport constructions.
It will skip the macro expansion if the expansion happened in an imported TU.
Also removes the expected plist file, while expanding matching context for
the tests.
Adds a previously crashing `plist-macros-with-expansion.c` testfile.
Temporarily marks `plist-macros-with-expansion-ctu.c ` to `XFAIL`.
Reviewed By: xazax.hun, Szelethus
Differential Revision: https://reviews.llvm.org/D93224
Adds a `MacroExpansionContext` member to the `AnalysisConsumer` class.
Tracks macro expansions only if the `ShouldDisplayMacroExpansions` is set.
Passes a reference down the pipeline letting AnalysisConsumers query macro
expansions during bugreport construction.
Reviewed By: martong, Szelethus
Differential Revision: https://reviews.llvm.org/D93223
Introduce `MacroExpansionContext` to track what and how macros in a translation
unit expand. This is the first element of the patch-stack in this direction.
The main goal is to substitute the current macro expansion generator in the
`PlistsDiagnostics`, but all the other `DiagnosticsConsumer` could benefit from
this.
`getExpandedText` and `getOriginalText` are the primary functions of this class.
The former can provide you the text that was the result of the macro expansion
chain starting from a `SourceLocation`.
While the latter will tell you **what text** was in the original source code
replaced by the macro expansion chain from that location.
Here is an example:
void bar();
#define retArg(x) x
#define retArgUnclosed retArg(bar()
#define BB CC
#define applyInt BB(int)
#define CC(x) retArgUnclosed
void unbalancedMacros() {
applyInt );
//^~~~~~~~~~^ is the substituted range
// Original text is "applyInt )"
// Expanded text is "bar()"
}
#define expandArgUnclosedCommaExpr(x) (x, bar(), 1
#define f expandArgUnclosedCommaExpr
void unbalancedMacros2() {
int x = f(f(1)) )); // Look at the parenthesis!
// ^~~~~~^ is the substituted range
// Original text is "f(f(1))"
// Expanded text is "((1,bar(),1,bar(),1"
}
Might worth investigating how to provide a reusable component, which could be
used for example by a standalone tool eg. expanding all macros to their
definitions.
I borrowed the main idea from the `PrintPreprocessedOutput.cpp` Frontend
component, providing a `PPCallbacks` instance hooking the preprocessor events.
I'm using that for calculating the source range where tokens will be expanded
to. I'm also using the `Preprocessor`'s `OnToken` callback, via the
`Preprocessor::setTokenWatcher` to reconstruct the expanded text.
Unfortunately, I concatenate the token's string representation without any
whitespaces except if the token is an identifier when I emit an extra space
to produce valid code for `int var` token sequences.
This could be improved later if needed.
Patch-stack:
1) D93222 (this one) Introduces the MacroExpansionContext class and unittests
2) D93223 Create MacroExpansionContext member in AnalysisConsumer and pass
down to the diagnostics consumers
3) D93224 Use the MacroExpansionContext for macro expansions in plists
It replaces the 'old' macro expansion mechanism.
4) D94673 API for CTU macro expansions
You should be able to get a `MacroExpansionContext` for each imported TU.
Right now it will just return `llvm::None` as this is not implemented yet.
5) FIXME: Implement macro expansion tracking for imported TUs as well.
It would also relieve us from bugs like:
- [fixed] D86135
- [confirmed] The `__VA_ARGS__` and other macro nitty-gritty, such as how to
stringify macro parameters, where to put or swallow commas, etc. are not
handled correctly.
- [confirmed] Unbalanced parenthesis are not well handled - resulting in
incorrect expansions or even crashes.
- [confirmed][crashing] https://bugs.llvm.org/show_bug.cgi?id=48358
Reviewed By: martong, Szelethus
Differential Revision: https://reviews.llvm.org/D93222
This patch extends VPWidenPHIRecipe to manage pairs of incoming
(VPValue, VPBasicBlock) in the VPlan native path. This is made possible
because we now directly manage defined VPValues for recipes.
By keeping both the incoming value and block in the recipe directly,
code-generation in the VPlan native path becomes independent of the
predecessor ordering when fixing up non-induction phis, which currently
can cause crashes in the VPlan native path.
This fixes PR45958.
Reviewed By: sguggill
Differential Revision: https://reviews.llvm.org/D96773
This removes the existing patterns for inserting two lanes into an
f16/i16 vector register using VINS, instead using a DAG combine to
pattern match the same code sequences. The tablegen patterns were
already on the large side (foreach LANE = [0, 2, 4, 6]) and were not
handling all the cases they could. Moving that to a DAG combine, whilst
not less code, allows us to better control and expand the selection of
VINSs. Additionally this allows us to remove the AddedComplexity on
VCVTT.
The extra trick that this has learned in the process is to move two
adjacent lanes using a single f32 vmov, allowing some extra
inefficiencies to be removed.
Differenial Revision: https://reviews.llvm.org/D96876