the X86 asmparser to produce ranges in the one case that was annoying me, for example:
test.s:10:15: error: invalid operand for instruction
movl 0(%rax), 0(%edx)
^~~~~~~
It should be straight-forward to enhance filecheck, tblgen, and/or the .ll parser to use
ranges where appropriate if someone is interested.
llvm-svn: 142106
Allow a target assembly parser to do context sensitive constraint checking
on a potential instruction match. This will be used, for example, to handle
Thumb2 IT block parsing.
llvm-svn: 137675
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
This can happen in cases where TableGen generated asm matcher cannot check
whether a register operand is in the right register class. e.g. mem operands.
rdar://8204588
llvm-svn: 136292
llvm-mc gives an "invalid operand" error for instructions that take an unsigned
immediate which have the high bit set such as:
pblendw $0xc5, %xmm2, %xmm1
llvm-mc treats all x86 immediates as signed values and range checks them.
A small number of x86 instructions use the imm8 field as a set of bits.
This change only changes those instructions and where the high bit is not
ignored. The others remain unchanged.
llvm-svn: 136287
The first problem to fix is to stop creating synthetic *Table_gen
targets next to all of the LLVM libraries. These had no real effect as
CMake specifies that add_custom_command(OUTPUT ...) directives (what the
'tablegen(...)' stuff expands to) are implicitly added as dependencies
to all the rules in that CMakeLists.txt.
These synthetic rules started to cause problems as we started more and
more heavily using tablegen files from *subdirectories* of the one where
they were generated. Within those directories, the set of tablegen
outputs was still available and so these synthetic rules added them as
dependencies of those subdirectories. However, they were no longer
properly associated with the custom command to generate them. Most of
the time this "just worked" because something would get to the parent
directory first, and run tablegen there. Once run, the files existed and
the build proceeded happily. However, as more and more subdirectories
have started using this, the probability of this failing to happen has
increased. Recently with the MC refactorings, it became quite common for
me when touching a large enough number of targets.
To add insult to injury, several of the backends *tried* to fix this by
adding explicit dependencies back to the parent directory's tablegen
rules, but those dependencies didn't work as expected -- they weren't
forming a linear chain, they were adding another thread in the race.
This patch removes these synthetic rules completely, and adds a much
simpler function to declare explicitly that a collection of tablegen'ed
files are referenced by other libraries. From that, we can add explicit
dependencies from the smaller libraries (such as every architectures
Desc library) on this and correctly form a linear sequence. All of the
backends are updated to use it, sometimes replacing the existing attempt
at adding a dependency, sometimes adding a previously missing dependency
edge.
Please let me know if this causes any problems, but it fixes a rather
persistent and problematic source of build flakiness on our end.
llvm-svn: 136023
Update the debug output interface for MCParsedAsmOperand to have a print()
method which takes an output stream argument, an << operator which invokes
the print method using the given stream, and a dump() method which prints
the operand to the dbgs() stream. This makes the interface more consistent
with the rest of LLVM, and more convenient to use at the debugger command
line.
llvm-svn: 135043
and MCSubtargetInfo.
- Added methods to update subtarget features (used when targets automatically
detect subtarget features or switch modes).
- Teach X86Subtarget to update MCSubtargetInfo features bits since the
MCSubtargetInfo layer can be shared with other modules.
- These fixes .code 16 / .code 32 support since mode switch is updated in
MCSubtargetInfo so MC code emitter can do the right thing.
llvm-svn: 134884
CPU, and feature string. Parsing some asm directives can change
subtarget state (e.g. .code 16) and it must be reflected in other
modules (e.g. MCCodeEmitter). That is, the MCSubtargetInfo instance
must be shared.
llvm-svn: 134795
- Each target asm parser now creates its own MCSubtatgetInfo (if needed).
- Changed AssemblerPredicate to take subtarget features which tablegen uses
to generate asm matcher subtarget feature queries. e.g.
"ModeThumb,FeatureThumb2" is translated to
"(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
llvm-svn: 134678
instructions. I choose to handle this with an asmparser hack,
though it could be handled by changing all the instruction definitions
to allow be "setneb" instead of "setne". The asm parser hack is
better in this case, because we want the disassembler to produce
setne, not setneb.
llvm-svn: 120260
sahf movl 344(%rdi),%r14d
we used to produce:
t.s:2:1: error: unexpected token in argument list
^
we now produce:
t.s:1:11: error: unexpected token in argument list
sahf movl 344(%rdi),%r14d
^
rdar://8581401
llvm-svn: 119676
shift-by-1 instructions, where the asmstring doesn't contain
the implicit 1. It turns out that a bunch of these rotate
instructions were completely broken because they used 1
instead of $1.
This fixes assembly mismatches on "rclb $1, %bl" and friends,
where we used to generate the 3 byte form, we now generate the
proper 2-byte form.
llvm-svn: 118355
floating point stack instructions instead of looking for b/w/l/q.
This fixes issues where we'd accidentally match fistp to fistpl,
when it is in fact an ambiguous instruction.
This changes the behavior of llvm-mc to reject fstp, which was the
correct fix for rdar://8456389:
t.s:1:1: error: ambiguous instructions require an explicit suffix (could be 'fstps', 'fstpl', or 'fstpt')
fstp (%rax)
it also causes us to correctly reject fistp and fist, which addresses
PR8528:
t.s:2:1: error: ambiguous instructions require an explicit suffix (could be 'fistps', or 'fistpl')
fistp (%rax)
^
t.s:3:1: error: ambiguous instructions require an explicit suffix (could be 'fists', or 'fistl')
fist (%rax)
^
Thanks to Ismail Donmez for tracking down the issue here!
llvm-svn: 118346
aliases installed and working. They now work when the
matched pattern and the result instruction have exactly
the same operand list.
This is now enough for us to define proper aliases for
movzx and movsx, implementing rdar://8017633 and PR7459.
Note that we do not accept instructions like:
movzx 0(%rsp), %rsi
GAS accepts this instruction, but it doesn't make any
sense because we don't know the size of the memory
operand. It could be 8/16/32 bits.
llvm-svn: 117901