Aligned with the measures we had in D124674, this condition seems to be
unlikely.
Nevertheless, I've made some new measurments with stats just for this,
and data confirms this is indeed unlikely.
Differential Revision: https://reviews.llvm.org/D127190
The `Builder.defineMacro("__cpp_multidimensional_subscript", "202110L");` line has
some `U+C2AD`s that shouldn't necessary here. So removed them.
Differential Revision: https://reviews.llvm.org/D127066
Given the flag `--always-execute-loop-body` the compiler emits code
to execute the body of the loop atleast once.
Note: This is part of upstreaming from the fir-dev branch of
https://github.com/flang-compiler/f18-llvm-project.
Reviewed By: awarzynski, schweitz
Differential Revision: https://reviews.llvm.org/D127128
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Co-authored-by: Sameeran Joshi <sameeranjayant.joshi@amd.com>
Change the signatures of parseBlock(), parseLevel(), and
parseStructuralElement() to support combining else and if when
removing braces. See #55663.
Differential Revision: https://reviews.llvm.org/D127005
A few OpenMP tests were retaining the FIR operands even after running
the LLVM conversion pass. To fix these tests the legality checkes for
OpenMP conversion are made stricter to include operands and results.
The Flush, Single and Sections operations are added to conversions or
legality checks. The RegionLessOpConversion is appropriately renamed
to clarify that it works only for operations with Variable operands.
The operands of the flush operation are changed to match those of
Variable Operands.
Fix for an OpenMP issue mentioned in
https://github.com/llvm/llvm-project/issues/55210.
Reviewed By: shraiysh, peixin, awarzynski
Differential Revision: https://reviews.llvm.org/D127092
Four leading spaces are interpreted as a code block in markdown. Unless
used consistently in ODS op description, they cannot be stripped away by
the tablegen backend, which results in malformed markdown being
generated.
Based on reviewer comments on https://reviews.llvm.org/D126692 I've
added FastMathFlags to the select instruction used when tail-folding
with reductions. These flags can then be used by InstCombine to
decide upon the most optimal floating point identity value for
fadd/fsub. Doing so unlocks further optimisations, such as folding
selects into masked loads.
Differential Revision: https://reviews.llvm.org/D126778
The parenthese body should be parameter-declaration-clause, rather
than parameter-declaration-list.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D125479
This patch removes use of -fno-builtin flag for building LLDB API
tests.
LLDB API tests are built using Makefile.rules where we were using
-fno-builtin flag to avoid gcc intrinsic optimization conflicting
with Android runtime in past.
Now that we no longer use gcc for building testsuite and compiling
LLDB API tests on AArch64/Windows require clang to optimize certain
calls like _setjmp to setjmpex as former is not implemented by
AArch64 windows runtime.
The clang lexer lexes it as a dedicated token kind (rather than
identifier), we extend the grammar to handle it.
Differential Revision: https://reviews.llvm.org/D126996
Now that transforms introducing branch on poison have been removed,
we can stop marking ranges that have been derived from branch
conditions as containing undef. The existing comment explains why
this is legal. I've checked that alive2 is happy with SCCP tests
after this change.
Differential Revision: https://reviews.llvm.org/D126647
Building Flang on Windows *is supported*. It's been tested there for
quite a while now:
* https://lab.llvm.org/buildbot/#/builders/172
Submitting this without a review as the current note in the readme file
is clearly incorrect.
These assert that there are no "useless" assertzext/assertsext nodes
(that assert a wider width than a following trunc), but I don't think
there is anything preventing such nodes from reaching this code.
I don't think the assertion is relevant for correctness of this
transform either -- if such an assert is present, then the other
one will always be to a smaller width, and we'll pick that one.
The assertion dates back to D37017.
Fixes https://github.com/llvm/llvm-project/issues/55846.
Differential Revision: https://reviews.llvm.org/D126952
Add complex.conj op to calculate the complex conjugate which is widely used for the mathematical operation on the complex space.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D127181
This supports lowering parse-tree to MLIR for threadprivate directive
following the OpenMP 5.1 [2.21.2] standard. Take the following as an
example:
```
program m
integer, save :: i
!$omp threadprivate(i)
call sub(i)
!$omp parallel
call sub(i)
!$omp end parallel
end
```
```
func.func @_QQmain() {
%0 = fir.address_of(@_QFEi) : !fir.ref<i32>
%1 = omp.threadprivate %0 : !fir.ref<i32> -> !fir.ref<i32>
fir.call @_QPsub(%1) : (!fir.ref<i32>) -> ()
omp.parallel {
%2 = omp.threadprivate %0 : !fir.ref<i32> -> !fir.ref<i32>
fir.call @_QPsub(%2) : (!fir.ref<i32>) -> ()
omp.terminator
}
return
}
```
A threadprivate operation (omp.threadprivate) is created for all
references to a threadprivate variable. The runtime will appropriately
return a threadprivate var (%1 as above) or its copy (%2 as above)
depending on whether it is outside or inside a parallel region. For
threadprivate access outside the parallel region, the threadprivate
operation is created in instantiateVar. Inside the parallel region, it
is created in createBodyOfOp.
One new utility function collectSymbolSet is created for collecting
all the variables with a property within a evaluation, which may be one
Fortran, or OpenMP, or OpenACC construct.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D124226
The previous XArrayCoorOp conversion forgot to change getting the
operands from OpAdaptor for upper bound and step of slice. This leads to
the fail of incompatible of types of codegen when slices are index type.
Reviewed By: kiranchandramohan, schweitz
Differential Revision: https://reviews.llvm.org/D125967
The previous semantic analysis does not consider when the last part-ref
is scalar or complex part. Refactor the previous code and bring all the
checks into one place. The check starts from the designator by
extracting the dataref wrapped including the substring and complex part
and recursively check the base objects.
Co-authored-by: Peter Klausler <pklausler@nvidia.com>
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D126595
Rewrite the introduction of the page to state clearly the goals of
LLVM's libc project.
Reviewed By: sivachandra
Differential Revision: https://reviews.llvm.org/D127174
Assume functions might recurse (see `reAssume` or `tryRearrange`).
During the recursion, the State might not change anymore, that means we
reached a fixpoint. In this patch, we avoid infinite recursion of assume
calls by checking already visited States on the stack of assume function
calls. This patch renders the previous "workaround" solution (D47155)
unnecessary. Note that this is not an NFC patch. If we were to limit the
maximum stack depth of the assume calls to 1 then would it be equivalent
with the previous solution in D47155.
Additionally, in D113753, we simplify the symbols right at the beginning
of evalBinOpNN. So, a call to `simplifySVal` in `getKnownValue` (added
in D51252) is no longer needed.
Fixes https://github.com/llvm/llvm-project/issues/55851
Differential Revision: https://reviews.llvm.org/D126560
These allow for displaying additional inline information,
such as the types of variables, names operands/results,
constraint/rewrite arguments, etc. This requires a bump in the
vscode extension to a newer version, as inlay hints are a new LSP feature.
Differential Revision: https://reviews.llvm.org/D126033
This is much more efficient over the full mode, as it only requires sending
smalls chunks of files. It also works around a weird command ordering
issue (full document updates are being sent after other commands like
code completion) in newer versions of vscode.
Differential Revision: https://reviews.llvm.org/D126032
Currently, we only check !nosanitize metadata for instruction passed to function `getInterestingMemoryOperands()` or instruction which is a cannot return callable instruction.
This patch add this check to any instruction.
E.g. ASan shouldn't instrument the instruction inserted by UBSan/pointer-overflow.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D126269
We should not mark a function as "referenced" if we call it within a
ConstantExpr, because the expression will be folded to a value in LLVM
IR. To prevent emitting consteval function declarations, we should not "jump
over" a ConstantExpr when it is a top-level ParmVarDecl's subexpression.
Fixes https://github.com/llvm/llvm-project/issues/48230
Reviewed By: erichkeane, aaron.ballman, ChuanqiXu
Differenitial Revision: https://reviews.llvm.org/D119646
DebugTypeVisitor
This recommits d1346e2. I've added a line to the test case to enable it
only on assert builds.
Differential Revision: https://reviews.llvm.org/D125839
This commit beefs up the documentation for MLIR language servers by
adding proper documentations/examples/etc for the provided TableGen
language server capabilities. Given that this documentation is also used
for the vscode extension, this commit also updates the user facing vscode
extension documentation.
Note that the images referenced in the new documentation are hosted on
the website, and will be commited to mlir-www shortly after this commit
lands.
Refactor the tablegen definitions for relaxed SIMD min/max instructions to use a
shared RelaxedBinary multiclass modeled on the existing SIMDBinary multiclass. A
future commit will add further instruction definitions that use RelaxedBinary.
Also rename the SIMD_RELAXED_CONVERT multiclass to RelaxedConvert to better fit
existing naming conventions.
Reviewed By: aheejin
Differential Revision: https://reviews.llvm.org/D127157
Some libraries (e.g., arm64rt.lib) from the Windows WDK (version 10.0.22000.0)
contain an undocumented special member '/<ECSYMBOLS>/'. This causes llvm-lib to
fail with the following error:
"truncated or malformed archive (long name offset characters after the '/' are
not all decimal numbers: '<ECSYMBOLS>/' for archive member header at offset 162)"
The '/<ECSYMBOLS>/' member does not seem to be documented anywhere, but might be
related to the ARM64EC ABI Microsoft announced last year.
https://blogs.windows.com/windowsdeveloper/2021/06/28/announcing-arm64ec-building-native-and-interoperable-apps-for-windows-11-on-arm/
Reviewed By: thieta, thakis
Differential Revision: https://reviews.llvm.org/D127135
This patch adds support for parsing the DXIL part data into the
ObjectYAML tooling.
The DXIL part has additional headers describing the shader and bitcode
data and stores serialized bitcode after the headers.
Depends on D124945
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D126795