Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: stoklund, sdesmalen, efriedma
Reviewed By: sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77272
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: dexonsmith, sdesmalen, efriedma
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77276
Summary:
At the moment, any changes we make to the passes that can be
injected before/after others (e.g. -verify-machineinstrs and
-print-after-all) have to be duplicated in both
TargetPassConfig (for normal execution, -start-before/
-stop-before/etc) and llc (for -run-pass). Unify this pass
injection into addMachinePrePass/addMachinePostPass that both
TargetPassConfig and llc can use.
Reviewers: vsk, aprantl, bogner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77887
Summary:
Refactor LiveRangeCalc such that it is now split into two classes
The objective is to split all the "register specific" logic away
from LiveRangeCalc.
The two new classes created are:
- LiveRangeCalc - is meant as a generic class to compute and modify
live ranges in a generic way. This class should deal only with
SlotIndices and VNInfo objects.
- LiveIntervalCals - is meant to be equivalent to the old LiveRangeCalc.
It computes the liveness virtual registers tracked by a LiveInterval
object.
With this refactoring LiveRangeCalc can be used to implement tracking of
liveness of LiveRanges that represent other things than just registers.
Subscribers: MatzeB, qcolombet, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76584
Summary:
This commit adds two command-line options to clang.
These options let the user decide which functions will receive SanitizerCoverage instrumentation.
This is most useful in the libFuzzer use case, where it enables targeted coverage-guided fuzzing.
Patch by Yannis Juglaret of DGA-MI, Rennes, France
libFuzzer tests its target against an evolving corpus, and relies on SanitizerCoverage instrumentation to collect the code coverage information that drives corpus evolution. Currently, libFuzzer collects such information for all functions of the target under test, and adds to the corpus every mutated sample that finds a new code coverage path in any function of the target. We propose instead to let the user specify which functions' code coverage information is relevant for building the upcoming fuzzing campaign's corpus. To this end, we add two new command line options for clang, enabling targeted coverage-guided fuzzing with libFuzzer. We see targeted coverage guided fuzzing as a simple way to leverage libFuzzer for big targets with thousands of functions or multiple dependencies. We publish this patch as work from DGA-MI of Rennes, France, with proper authorization from the hierarchy.
Targeted coverage-guided fuzzing can accelerate bug finding for two reasons. First, the compiler will avoid costly instrumentation for non-relevant functions, accelerating fuzzer execution for each call to any of these functions. Second, the built fuzzer will produce and use a more accurate corpus, because it will not keep the samples that find new coverage paths in non-relevant functions.
The two new command line options are `-fsanitize-coverage-whitelist` and `-fsanitize-coverage-blacklist`. They accept files in the same format as the existing `-fsanitize-blacklist` option <https://clang.llvm.org/docs/SanitizerSpecialCaseList.html#format>. The new options influence SanitizerCoverage so that it will only instrument a subset of the functions in the target. We explain these options in detail in `clang/docs/SanitizerCoverage.rst`.
Consider now the woff2 fuzzing example from the libFuzzer tutorial <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md>. We are aware that we cannot conclude much from this example because mutating compressed data is generally a bad idea, but let us use it anyway as an illustration for its simplicity. Let us use an empty blacklist together with one of the three following whitelists:
```
# (a)
src:*
fun:*
# (b)
src:SRC/*
fun:*
# (c)
src:SRC/src/woff2_dec.cc
fun:*
```
Running the built fuzzers shows how many instrumentation points the compiler adds, the fuzzer will output //XXX PCs//. Whitelist (a) is the instrument-everything whitelist, it produces 11912 instrumentation points. Whitelist (b) focuses coverage to instrument woff2 source code only, ignoring the dependency code for brotli (de)compression; it produces 3984 instrumented instrumentation points. Whitelist (c) focuses coverage to only instrument functions in the main file that deals with WOFF2 to TTF conversion, resulting in 1056 instrumentation points.
For experimentation purposes, we ran each fuzzer approximately 100 times, single process, with the initial corpus provided in the tutorial. We let the fuzzer run until it either found the heap buffer overflow or went out of memory. On this simple example, whitelists (b) and (c) found the heap buffer overflow more reliably and 5x faster than whitelist (a). The average execution times when finding the heap buffer overflow were as follows: (a) 904 s, (b) 156 s, and (c) 176 s.
We explain these results by the fact that WOFF2 to TTF conversion calls the brotli decompression algorithm's functions, which are mostly irrelevant for finding bugs in WOFF2 font reconstruction but nevertheless instrumented and used by whitelist (a) to guide fuzzing. This results in longer execution time for these functions and a partially irrelevant corpus. Contrary to whitelist (a), whitelists (b) and (c) will execute brotli-related functions without instrumentation overhead, and ignore new code paths found in them. This results in faster bug finding for WOFF2 font reconstruction.
The results for whitelist (b) are similar to the ones for whitelist (c). Indeed, WOFF2 to TTF conversion calls functions that are mostly located in SRC/src/woff2_dec.cc. The 2892 extra instrumentation points allowed by whitelist (b) do not tamper with bug finding, even though they are mostly irrelevant, simply because most of these functions do not get called. We get a slightly faster average time for bug finding with whitelist (b), which might indicate that some of the extra instrumentation points are actually relevant, or might just be random noise.
Reviewers: kcc, morehouse, vitalybuka
Reviewed By: morehouse, vitalybuka
Subscribers: pratyai, vitalybuka, eternalsakura, xwlin222, dende, srhines, kubamracek, #sanitizers, lebedev.ri, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D63616
Currently the library is separately linked, but this isn't correct to
implement fast math flags correctly. Each module should get the
version of the library appropriate for its combination of fast math
and related flags, with the attributes propagated into its functions
and internalized.
HIP already maintains the list of libraries, but this is not used for
OpenCL. Unfortunately, HIP uses a separate --hip-device-lib argument,
despite both languages using the same bitcode library. Eventually
these two searches need to be merged.
An additional problem is there are 3 different locations the libraries
are installed, depending on which build is used. This also needs to be
consolidated (or at least the search logic needs to deal with this
unnecessary complexity).
These were accidental SCARY iterator uses that weren't guaranteed and in
libc++'s debug checking mode were actually distinct types. Use decltype
to make it easier to keep these things up to date.
When constrained floating point is enabled the AArch64-specific builtins don't use constrained intrinsics in some cases. Fix that.
Neon is part of this patch, so ARM is affected as well.
Differential Revision: https://reviews.llvm.org/D77074
Remove a number of includes that aren't necessary (nor are we relying on the remaining includes to provide the declarations), we just needed a llvm::Instruction forward declaration.
This exposed a couple of source files that were implicitly replying on the includes for their use of llvm::SmallSet or std::set, requiring local includes to be added there instead.
This replaces the ChildrenGetter inside the DominatorTree with
GraphTraits over a GraphDiff object, an object which encapsulated the
view of the previous CFG.
This also simplifies the extentions in clang which use DominatorTree, as
GraphDiff also filters nullptrs.
Re-land a90374988e after moving CFGDiff.h
to Support.
Differential Revision: https://reviews.llvm.org/D77341
This reverts commit a90374988e and 5da1671bf8.
A new dependency is introduced here from Support to IR which seems like
a layering violation. It also breaks the MLIR build at the moment.
The change introduces the usage of physical registers for non-gc deopt values.
This require runtime support to know how to take a value from register.
By default usage is off and can be switched on by option.
The change also introduces additional fix-up patch which forces the spilling
of caller saved registers (clobbered after the call) and re-writes statepoint
to use spill slots instead of caller saved registers.
Reviewers: reames, danstrushin
Reviewed By: dantrushin
Subscribers: mgorny, hiraditya, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D77797
This behaviour is in line with SmallBitVector and other vector-like
types.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D77027
Summary:
Encode `-fveclib` setting as per-function attribute so it can threaded through to LTO backends. Accordingly per-function TLI now reads
the attributes and select available vector function list based on that. Now we also populate function list for all supported vector
libraries for the shared per-module `TargetLibraryInfoImpl`, so each function can select its available vector list independently but without
duplicating the vector function lists. Inlining between incompatbile vectlib attributed is also prohibited now.
Subscribers: hiraditya, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77632
Summary:
This replaces the ChildrenGetter inside the DominatorTree with
GraphTraits over a GraphDiff object, an object which encapsulated the
view of the previous CFG.
This also simplifies the extentions in clang which use DominatorTree, as
GraphDiff also filters nullptrs.
Reviewers: kuhar, dblaikie, NutshellySima
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77341
Adds basic support for LLJITBuilder and DynamicLibrarySearchGenerator. This
allows C API clients to configure LLJIT to expose process symbols to JIT'd
code. An example of this is added in
llvm/examples/OrcV2CBindingsReflectProcessSymbols.
Summary:
Removes:
* All LLVM-IR level debug info using StripDebugInfo()
* All debugify metadata
* 'Debug Info Version' module flag
* All (valid*) DEBUG_VALUE MachineInstrs
* All DebugLocs from MachineInstrs
This is a more complete solution than the previous MIRPrinter
option that just causes it to neglect to print debug-locations.
* The qualifier 'valid' is used here because AArch64 emits
an invalid one and tests depend on it
Reviewers: vsk, aprantl, bogner
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77747
Summary:
*Almost* all uses are replaced. Left FIXMEs for the two sites that
require refactoring outside of Inliner, to scope this patch.
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77817
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: sunfish, sdesmalen, efriedma
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77273
Add initial support for PC Relative addressing for constant pool loads.
This includes adding a new relocation for @pcrel and adding a new PowerPC flag
to identify PC relative addressing.
Differential Revision: https://reviews.llvm.org/D74486
The change introduces the usage of physical registers for non-gc deopt values.
This require runtime support to know how to take a value from register.
By default usage is off and can be switched on by option.
The change also introduces additional fix-up patch which forces the spilling
of caller saved registers (clobbered after the call) and re-writes statepoint
to use spill slots instead of caller saved registers.
Reviewers: reames, dantrushin
Reviewed By: reames, dantrushin
Subscribers: mgorny, hiraditya, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D77371
Summary:
There are at least three clients for KnownBits calculations:
ValueTracking, SelectionDAG and GlobalISel. To reduce duplication the
common logic should be moved out of these clients and into KnownBits
itself.
This patch does this for AND, OR and XOR calculations by implementing
and using appropriate operator overloads KnownBits::operator& etc.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74060
Now compiler defines 5 sets of constants to represent rounding mode.
These are:
1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes
defined by IEEE-754 and is used in `APFloat` implementation.
2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754
rounding modes and a special value for dynamic rounding mode. It is used
in clang frontend.
3. `llvm::fp::RoundingMode`. Defines the same values as
`clang::LangOptions::FPRoundingModeKind` but in different order. It is
used to specify rounding mode in in IR and functions that operate IR.
4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7).
Besides constants for rounding mode it also uses a special value to
indicate error. It is convenient to use in intrinsic functions, as it
represents platform-independent representation for rounding mode. In this
role it is used in some pending patches.
5. Values like `FE_DOWNWARD` and other, which specify rounding mode in
library calls `fesetround` and `fegetround`. Often they represent bits
of some control register, so they are target-dependent. The same names
(not values) and a special name `FE_DYNAMIC` are used in
`#pragma STDC FENV_ROUND`.
The first 4 sets of constants are target independent and could have the
same numerical representation. It would simplify conversion between the
representations. Also now `clang::LangOptions::FPRoundingModeKind` and
`llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding
direction `roundTiesToAway`, although it is supported natively on
some targets.
This change defines all the rounding mode type via one `llvm::RoundingMode`,
which also contains rounding mode for IEEE rounding direction `roundTiesToAway`.
Differential Revision: https://reviews.llvm.org/D77379
Summary:
New SanitizerCoverage feature `inline-bool-flag` which inserts an
atomic store of `1` to a boolean (which is an 8bit integer in
practice) flag on every instrumented edge.
Implementation-wise it's very similar to `inline-8bit-counters`
features. So, much of wiring and test just follows the same pattern.
Reviewers: kcc, vitalybuka
Reviewed By: vitalybuka
Subscribers: llvm-commits, hiraditya, jfb, cfe-commits, #sanitizers
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D77244
Attributor.cpp became quite big and we need to start provide structure.
The Attributor code is now in Attributor.cpp and the classes derived
from AbstractAttribute are in AttributorAttributes.cpp. Minor changes
were required but no intended functional changes.
We also minimized includes as part of this.
Reviewed By: baziotis
Differential Revision: https://reviews.llvm.org/D76873
Summary: Pass options are a better choice for various reasons and avoid the need for static constructors.
Differential Revision: https://reviews.llvm.org/D77707
This patch introduces the heat coloring of the Control Flow Graph which is based
on the relative "hotness" of each BB. The patch is a part of sequence of three
patches, related to graphs Heat Coloring.
Reviewers: rcorcs, apilipenko, davidxl, sfertile, fedor.sergeev, eraman, bollu
Differential Revision: https://reviews.llvm.org/D77161
fuchsia-x86_64-linux builder fails with:
/b/fuchsia-x86_64-linux/llvm.src/llvm/include/llvm/ADT/TinyPtrVector.h:85:15:
error: no matching conversion for C-style cast from 'nullptr_t' to 'llvm::ReachingDef'
RHS.Val = (EltTy)nullptr;
Let's see whether adding an explicit nullptr_t constructor helps.
RDA currently uses SmallVector<int, 1> to store reaching definitions.
A SmallVector<int, 1> is 24 bytes large, and X86 currently has
164 register units, which means we need 3936 bytes per block.
If you have a large function with 1000 blocks, that's already 4MB.
A large fraction of these reg units will not have any reaching defs
(say, those corresponding to zmm registers), and many will have just
one. A TinyPtrVector serves this use-case much better, as it only
needs 8 bytes per register if it has 0 or 1 reaching defs.
As the name implies, TinyPtrVector is designed to work with pointers,
so we need to add some boilerplate to treat our reaching def integers
as pointers, using an appropriate encoding. We need to keep the low
bit free for tagging, and make sure at least one bit is set to
distinguish the null pointer.
Differential Revision: https://reviews.llvm.org/D77513
On PowerPC most functions require a valid TOC pointer.
This is the case because either the function itself needs to use this
pointer to access the TOC or because other functions that are called
from that function expect a valid TOC pointer in the register R2.
The main exception to this is leaf functions that do not access the TOC
since they are guaranteed not to need a valid TOC pointer.
This patch introduces a feature that will allow more functions to not
require a valid TOC pointer in R2.
Differential Revision: https://reviews.llvm.org/D73664
The R_AARCH64_PLT32 relocation type will be documented in the next release
of ELF for the 64-bit Arm Architecture. It is being added in draft state
for the benefit of the position independent vtable feature.
R_AARCH64_PLT32 is very similar to R_AARCH64_PREL32. The intention is to
provide a signed 32-bit integer representing an offset from the place
to a function.
- It relocates 32-bit data
- The expression is S + A - P
- The overflow check for the expression is -2^31 <= X < 2^31
- The relocation generates Thunks/Veneers/Stubs and PLT entries as per
R_AArch64_CALL26
- If the symbol S is an undefined weak the ABI does not define its value.
The ABI defines a code for ilp32 for completeness, I have added the code
but have only added to the existing reloc-types-elf-aarch64.text as there
is no ilp32 equivalent.
Differential Revision: https://reviews.llvm.org/D77647
Summary:
Since D75300 has been landed, I want to support enhanced relaxation when we need to align branches and allow prefix padding. "Enhanced Relaxtion" means we allow an instruction that could not be traditionally relaxed to be emitted into RelaxableFragment so that we increase its length by adding prefixes for optimization.
The motivation is straightforward, RelaxFragment is mostly for relative jumps and we can not increase the length of jumps when we need to align them, so if we need to achieve D75300's purpose (reducing the bytes of nops) when need to align jumps, we have to make more instructions "relaxable".
Reviewers: reames, MaskRay, craig.topper, LuoYuanke, jyknight
Reviewed By: reames
Subscribers: hiraditya, llvm-commits, annita.zhang
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76286
Summary:
Legalization can introduce the trunc(trunc) pattern. This can cause
problems if one of these intermediate truncs is not legal.
Combine truncs of this pattern, if the resulting trunc is legal.
Reviewers: arsenm, aemerson, dsanders
Reviewed By: arsenm
Subscribers: jvesely, wdng, nhaehnle, rovka, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76601
Summary:
Combine sext(zext x) to (zext x) since the sign-bit is 0
after the zero-extension.
Combine sext(sext x) to (sext x) and ext(zext x) to (zext x)
since the intermediate step is not needed.
Reviewers: arsenm, volkan, aemerson, aditya_nandakumar
Reviewed By: arsenm
Subscribers: jvesely, wdng, nhaehnle, rovka, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77210
Summary:
When narrowing G_IMPLICIT_DEF where the original size is not a multiple
of the narrow size, emit a smaller G_IMPLICIT_DEF and use G_ANYEXT.
To prevent a potential endless loop in the legalizer, the condition
to combine G_ANYEXT(G_IMPLICIT_DEF) is changed from isInstUnsupported
to !isInstLegal, since in this case the combine is only valid if
consequent legalization of the newly combined G_IMPLICIT_DEF does not
introduce G_ANYEXT due to narrowing.
Although this legalization for G_IMPLICIT_DEF would also be valid for
the general case, it actually caused a lot of code regressions when
tried due to superfluous COPYs and combines not getting hit anymore.
Reviewers: dsanders, aemerson, volkan, arsenm, aditya_nandakumar
Reviewed By: arsenm
Subscribers: jvesely, nhaehnle, kerbowa, wdng, rovka, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76598
In DWARFv5, type units are stored in .debug_info sections, along with
compilation units, and they are distinguished by the unit_type field
in the header, not by the name of the section. It is impossible to
associate the correct index section of a DWP file with the unit before
the unit's header is read. This patch fixes reading DWARFv5 type units
by parsing the header first and then applying the index entry according
to the actual unit type.
Differential Revision: https://reviews.llvm.org/D77552
By default, all traits in the OpenMP context selector have to match for
it to be acceptable. Though, we sometimes want a single property out of
multiple to match (=any) or no match at all (=none). We offer these
choices as extensions via
`implementation={extension(match_{all,any,none})}`
to the user. The choice will affect the entire context selector not only
the traits following the match property.
The first user will be D75788. There we can replace
```
#pragma omp begin declare variant match(device={arch(nvptx64)})
#define __CUDA__
#include <__clang_cuda_cmath.h>
// TODO: Hack until we support an extension to the match clause that allows "or".
#undef __CLANG_CUDA_CMATH_H__
#undef __CUDA__
#pragma omp end declare variant
#pragma omp begin declare variant match(device={arch(nvptx)})
#define __CUDA__
#include <__clang_cuda_cmath.h>
#undef __CUDA__
#pragma omp end declare variant
```
with the much simpler
```
#pragma omp begin declare variant match(device={arch(nvptx, nvptx64)}, implementation={extension(match_any)})
#define __CUDA__
#include <__clang_cuda_cmath.h>
#undef __CUDA__
#pragma omp end declare variant
```
Reviewed By: mikerice
Differential Revision: https://reviews.llvm.org/D77414
Summary:
ComputeValueKnownInPredecessorsImpl is the main folding mechanism in
JumpThreading.cpp. To avoid potential infinite recursion while
chasing use-def chains, it uses:
DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet
to keep track of Value-BB pairs that we've processed.
Now, when ComputeValueKnownInPredecessorsImpl recursively calls
itself, it always passes BB as is, so the second element is always BB.
This patch simplifes the function by dropping "BasicBlock *" from
RecursionSet.
Reviewers: wmi, efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77699
Summary:
Re-used the IR-level debugify for the most part. The MIR-level code then
adds locations to the MachineInstrs afterwards based on the LLVM-IR debug
info.
It's worth mentioning that the resulting locations make little sense as
the range of line numbers used in a Function at the MIR level exceeds that
of the equivelent IR level function. As such, MachineInstrs can appear to
originate from outside the subprogram scope (and from other subprogram
scopes). However, it doesn't seem worth worrying about as the source is
imaginary anyway.
There's a few high level goals this pass works towards:
* We should be able to debugify our .ll/.mir in the lit tests without
changing the checks and still pass them. I.e. Debug info should not change
codegen. Combining this with a strip-debug pass should enable this. The
main issue I ran into without the strip-debug pass was instructions with MMO's and
checks on both the instruction and the MMO as the debug-location is
between them. I currently have a simple hack in the MIRPrinter to
resolve that but the more general solution is a proper strip-debug pass.
* We should be able to test that GlobalISel does not lose debug info. I
recently found that the legalizer can be unexpectedly lossy in seemingly
simple cases (e.g. expanding one instr into many). I have a verifier
(will be posted separately) that can be integrated with passes that use
the observer interface and will catch location loss (it does not verify
correctness, just that there's zero lossage). It is a little conservative
as the line-0 locations that arise from conflicts do not track the
conflicting locations but it can still catch a fair bit.
Depends on D77439, D77438
Reviewers: aprantl, bogner, vsk
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77446
dso_local leads to direct access even if the definition is not within this compilation unit (it is
still in the same linkage unit). On ELF, such a relocation (e.g. R_X86_64_PC32) referencing a
STB_GLOBAL STV_DEFAULT object can cause a linker error in a -shared link.
If the linkage is changed to available_externally, the dso_local flag should be dropped, so that no
direct access will be generated.
The current behavior is benign, because -fpic does not assume dso_local
(clang/lib/CodeGen/CodeGenModule.cpp:shouldAssumeDSOLocal).
If we do that for -fno-semantic-interposition (D73865), there will be an
R_X86_64_PC32 linker error without this patch.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D74751
Fix the error of show-prof-info.test on some platforms without zlib.
The common profile usage is to collect profile from a target and then use the profile to guide the optimized build for the same target. There are some cases that no profile can be collected for a target. In those cases, although no full profile is available, it is possible to have some partial profile collected from other targets to optimize common libraries and utilities. A flag is needed to tell the partial profile from the full profile apart, so compiler can use different strategy for them.
Differential Revision: https://reviews.llvm.org/D77426
The common profile usage is to collect profile from a target and then use the profile to guide the optimized build for the same target. There are some cases that no profile can be collected for a target. In those cases, although no full profile is available, it is possible to have some partial profile collected from other targets to optimize common libraries and utilities. A flag is needed to tell the partial profile from the full profile apart, so compiler can use different strategy for them.
Differential Revision: https://reviews.llvm.org/D77426
For implementing "remove obsolete debug info in lld", it is neccesary
to have DWARF generation code implementation. dsymutil uses DwarfStreamer
for that purpose. DwarfStreamer uses AsmPrinter. It is considered OK
to use AsmPrinter based code in lld(D74169). This patch moves
DwarfStreamer implementation into DWARFLinker, so that it could be reused
from lld.
Generally, a better place for such a common DWARF generation code would be
not DWARFLinker but an additional separate library. Such a library could
contain a single version of DWARF generation routines and could also
be independent of AsmPrinter. At the current moment, DwarfStreamer
does not pretend to be such a general implementation of DWARF generation.
So I decided to put it into DWARFLinker since it is the only user
of DwarfStreamer.
Testing: it passes "check-all" lit testing. MD5 checksum for clang .dSYM
bundle matches for the dsymutil with/without that patch.
Reviewed By: JDevlieghere
Differential revision: https://reviews.llvm.org/D77169
These should not be assuming address space 0. Calling getPointerTy is
generally the wrong thing to do, since you should already know the
type from the incoming IR.
RDA sometimes needs to visit blocks twice, to take into account
reaching defs coming in along loop back edges. Currently it handles
repeated visitation the same way as usual, which means that it will
scan through all instructions and their reg unit defs again. Not
only is this very inefficient, it also means that all reaching defs
in loops are going to be inserted twice.
We can do much better than this. The only thing we need to handle
is a new reaching def from a predecessor, which either needs to be
prepended to the reaching definitions (if there was no reaching def
from a predecessor), or needs to replace an existing predecessor
reaching def, if it is more recent. Since D77508 we only store the
most recent predecessor reaching def, so that's the only one that
may need updating.
This also has the nice side-effect that reaching definitions are
now automatically sorted and unique, so drop the llvm::sort() call
in favor of an assertion.
Differential Revision: https://reviews.llvm.org/D77511
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
Summary:
To debugify MIR, we need to be able to create metadata and to do that, we
need a non-const Module. However, MachineFunction only had a const reference
to the Function preventing this.
Reviewers: aprantl, bogner
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77439
DataTypes.h is meant to wrap the integer type and limits headers, which
have some unfortunate variance. The FP math functions declared by math.h
are not unnecessary. math.h took a noticeable amount of time to parse
(~40ms), but that could be startup costs.
Anyway, we don't need to include it, so skipping it can't hurt.
This has been present since the initial CMake build was added in 2008.
The patch introduces the system to distinctively store the information
needed for the Control Flow Graph as well as the instrumentary needed for
the follow-up changes: BlockFrequencyInfo and BranchProbabilityInfo.
The patch is a part of sequence of three patches, related to graphs Heat Coloring.
Reviewers: rcorcs, apilipenko, davidxl, sfertile, fedor.sergeev, eraman, bollu
Differential Revision: https://reviews.llvm.org/D76820
SUMMARY:
For the llvm-objdump -D, the symbol name is used as a label in the disassembly for the specific address (when a symbol address is equal to the virtual address in the dump).
In XCOFF, multiple symbols may have the same name, being differentiated by their storage mapping class. It is helpful to print the QualName and not just the name when forming the output label for a csect symbol. The symbol index further removes any ambiguity caused by duplicate names.
To maintain compatibility with the binutils objdump, the XCOFF-specific --symbol-description option is added to enable the enhanced format.
Reviewers: hubert.reinterpretcast, James Henderson, Jason Liu ,daltenty
Subscribers: wuzish, nemanjai, hiraditya
Differential Revision: https://reviews.llvm.org/D72973
Summary:
This patch adds support for emission of following DWARFv5 macro forms
in .debug_macro section.
1. DW_MACRO_start_file
2. DW_MACRO_end_file
3. DW_MACRO_define_strp
4. DW_MACRO_undef_strp.
Reviewed By: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D72828
Summary:
If the decoding functions are called with both start and end pointers
being nullptr, the function will crash due to a nullptr dereference.
This happens because the function does not recognise nullptr as a valid
end pointer.
Obviously, nobody is going to pass null pointers here deliberately, but
it can happen indirectly (as it did for me), when calling these
functions on an ArrayRef, as a default-initialized empty ArrayRef will
have both begin() and end() pointers equal to nullptr.
The fix is to simply remove the nullptr check. Passing nullptr for "end"
with a valid "begin" pointer will still work, as one cannot reach
nullptr by incrementing a valid pointer without triggerring UB.
Reviewers: dblaikie
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77304
Summary:
This patch adds the optional Error argument, and the Cursor variants to
more DataExtractor methods. The functions now behave the same way as
other error-aware functions (they set the error when they fail, and
don't do anything if the error is already set).
I have merged the LEB128 implementations via a template (similarly to
how fixed-size functions are handled) to reduce code duplication.
Depends on D77304.
Reviewers: dblaikie, aprantl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77306
Summary:
This patch adds an optional Error argument to DataExtractor functions
for string extraction, and makes them behave like other DataExtractor
functions (set the error if extraction fails, don't do anything if the
error is already set).
I have merged the StringRef and C string versions of the functions to
reduce code duplication.
Reviewers: dblaikie, MaskRay
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77307
Summary:
This is a roll forward of D77394 minus AlignmentFromAssumptions (which needs to be addressed separately)
Differences from D77394:
- DebugStr() now prints the alignment value or `None` and no more `Align(x)` or `MaybeAlign(x)`
- This is to keep Warning message consistent (CodeGen/SystemZ/alloca-04.ll)
- Removed a few unneeded headers from Alignment (since it's included everywhere it's better to keep the dependencies to a minimum)
Reviewers: courbet
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77537
Summary:
24 March 2020: LLVM 10.0.0 is out.
I gathered all deprecated function introduced between 9 and 10 and cleaned them up so they will be removed from 11.
> git log -p -S LLVM_ATTRIBUTE_DEPRECATED llvmorg-9.0.0..llvmorg-10.0.0
Reviewers: courbet
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77409
DWARFv5 defines index sections in package files in a slightly different
way than the pre-standard GNU proposal, see Section 7.3.5 in the DWARF
standard and https://gcc.gnu.org/wiki/DebugFissionDWP for GNU proposal.
The main concern here is values for section identifiers, which are
partially overlapped with changed meanings. The patch adds support for
v5 index sections and resolves that difficulty by defining a set of
identifiers for internal use which can represent and distinct values
of both standards.
Differential Revision: https://reviews.llvm.org/D75929
This is a preparation for an upcoming patch which adds support for
DWARFv5 unit index sections. The patch adds tag "_EXT_" to identifiers
which reference sections that are deprecated in the DWARFv5 standard.
See D75929 for the discussion.
Differential Revision: https://reviews.llvm.org/D77141
Move the listing of allowed clauses per OpenMP directive to the new
macro file in `llvm/Frontend/OpenMP`. Also, use a single generic macro
that specifies the directive and one allowed clause explicitly instead
of a dedicated macro per directive.
We save 800 loc and boilerplate for all new directives/clauses with no
functional change. We also need to include the macro file only once and
not once per directive.
Depends on D77112.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D77113
This is a cleanup and normalization patch that also enables reuse with
Flang later on. A follow up will clean up and move the directive ->
clauses mapping.
Reviewed By: fghanim
Differential Revision: https://reviews.llvm.org/D77112
Add a new overload of StaticLibraryDefinitionGenerator::Load that takes a triple
argument and supports loading archives from MachO universal binaries in addition
to regular archives.
The LLI tool is updated to use this overload.
`isKnownReachable` had only interface (always returns true).
Changed it to call `isPotentiallyReachable`.
This change enables deductions of other Abstract Attributes depending on
AAReachability to use reachability information obtained from CFG, and it
can make them stronger.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D76210
This commit was made to settle [[ https://github.com/llvm/llvm-project/issues/175 | this issue on GitHub ]].
I added analysis getters for LoopInfo, DominatorTree, and
PostDominatorTree. And I added a test to show an improvement of the
deduction of `dereferenceable` attribute.
Reviewed By: jdoerfert, uenoku
Differential Revision: https://reviews.llvm.org/D76378
Since D73835 we no longer need to define the whole IRBuilder
implementation in the header. This patch moves some of the larger
methods out of line, into the C++ file.
Differential Revision: https://reviews.llvm.org/D77332
Summary:
Note: This revision is very similar to D62296.
In D75756, we need `getDynamicSymbolIterators()` to skip first NULL symbol in `.dynsym`. And I believe it might be worth pointing this out in a separate patch to gather you experts' opinions.
I have checked that current code base will not be affected by this change.
```
dynamic_symbol_begin()
|- dynamic_symbol_end(): Ok
`- getDynamicSymbolIterators()
|- addDynamicElfSymbols(): llvm/tools/llvm-objdump/llvm-objdump.cpp, Line 934
| Ok, NULL symbol will be omitted by Line 945-947
| StringRef Name = unwrapOrError(Symbol.getName(), Obj->getName());
| if (Name.empty()) continue;
|- dumpSymbolNameFromObject(): llvm/tools/llvm-nm/llvm-nm.cpp, Line 1192
| There's no test for dumping dynamic debugging symbol. This patch helps improve llvm-nm behavior. (we should add test for this later)
`- computeSymbolSizes(): llvm/lib/Object/SymbolSize.cpp, Line 52
|- OProfileJITEventListener::notifyObjectLoaded(): llvm/lib/ExecutionEngine/OProfileJIT/OProfileJITEventListener.cpp, Line 92
| Ok, NULL symbol will be omitted by Line 94-95
| if (!Sym.getType() || *Sym.getType() != SF_Function) continue;
|- IntelJITEventListener::notifyObjectLoaded(): llvm/lib/ExecutionEngine/IntelJITEvents/IntelJITEventListener.cpp, Line 98
| Ok, NULL symbol will be omitted by Line 124-126 (same as previous one)
|- PerfJITEventListener::notifyObjectLoaded(): llvm/lib/ExecutionEngine/PerfJITEvents/PerfJITEventListener.cpp, Line 244
| Ok, NULL symbol will be omitted by Line 254-256, (same as previous one)
|- SymbolizableObjectFile::create(): llvm/lib/DebugInfo/Symbolize/SymbolizableObjectFile.cpp, Line 73
| Ok, NULL symbol will be omitted by Line 75
| res->addSymbol()
| In addSymbol(), Line 167-168
| if (!Sec || (Obj && Obj->section_end() == *Sec)) return std::error_code();
|- dumpCXXData(): llvm/tools/llvm-cxxdump/llvm-cxxdump.cpp, Line 189
| Ok, NULL symbol will be omitted by Line 199-202
| object::section_iterator SecI = *SecIOrErr;
| // Skip external symbols.
| if (SecI == Obj->section_end())
| continue;
`- printLineInfoForInput(): llvm/tools/llvm-rtdyld/llvm-rtdyld.cpp, Line 418
Ok, NULL symbol will be omitted by Line 430-477
if (Type == object::SymbolRef::ST_Function) {
...
}
```
Reviewers: grimar, jhenderson, MaskRay
Reviewed By: jhenderson, MaskRay
Subscribers: rupprecht, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76081
Forward declare DemandedBits in IVDescriptors, and move include
into the cpp file. Also drop the include from LoopUtils, which
does not need it at all.
Summary:
This patch includes two extensions:
1. It extends the GraphDiff to also keep the original list of updates
after legalization, not just the deletes/insert vectors.
It also provides an API to pop the first update (the updates are store
in reverse, such that the first update is at the end of the list)
2. It adds a bool to mark whether the given updates should be applied as
given, or applied in reverse. This moves the task of reversing the
updates (when the caller needs this) to a functionality inside
GraphDiff, versus having the caller do this.
The two changes could be split into two patches, but they seemed
reasonably small to be reviewed together.
Reviewers: kuhar, dblaikie
Subscribers: hiraditya, george.burgess.iv, mgrang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77167
Added unit tests for 2 scenarios that were failing.
Made replace_path_prefix back to 3 parameters instead of 5, simplifying the implementation. The other 2 were always used with the default value.
This commit is intended to be the first of 3:
1) simplify/fix replace_path_prefix.
2) use it in the context of -fdebug-prefix-map and -fmacro-prefix-map (see D76869).
3) Make Windows version of replace_path_prefix insensitive to both case and separators (slash vs backslash).
Differential Revision: https://reviews.llvm.org/D77223
Summary:
For current architect, we always require setContainingCsect to be
called on every MCSymbol got used in XCOFF context.
This is very hard to achieve because symbols gets created everywhere
and other MCSymbol types(ELF, COFF) do not have similar rules.
It's very easy to miss setting the containing csect, and we would
need to add a lot of XCOFF specialized code around some common code area.
This patch intendeds to do
1. Rely on getFragment().getParent() to get csect from labels.
2. Only use get/setRepresentedCsect (was get/setContainingCsect)
if symbol itself represents a csect.
Reviewers: DiggerLin, hubert.reinterpretcast, daltenty
Differential Revision: https://reviews.llvm.org/D77080
The old name was a bit misleading because the functions actually return
contributions to the corresponding sections.
Differential revision: https://reviews.llvm.org/D77302
Summary:
This patch adds parsing and dumping DWARFv5 .debug_macro section in llvm-dwarfdump,
it does not introduce any new switch. Existing switch "--debug-macro"
should be used to dump macinfo or macro section.
Reviewed By: dblaikie, ikudrin, jhenderson
Differential Revision: https://reviews.llvm.org/D73086
Summary:
Add mapping from exp2 math functions
to corresponding SVML calls.
This is a follow up and extension for llvm diff
https://reviews.llvm.org/D19544
Test Plan:
- update test case and run ninja check.
- run tests locally
Reviewers: wenlei, hoyFB, mmasten, mzolotukhin, spatel
Reviewed By: spatel
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77114
Summary:
[llvm][TextAPI] adding inlining reexported libraries support
* this patch adds reader/writer support for MachO tbd files.
The usecase is to represent reexported libraries in top level library
that won't need to exist for linker indirection because all of the
needed content will be inlined in the same document.
Reviewers: ributzka, steven_wu, jhenderson
Reviewed By: ributzka
Subscribers: JDevlieghere, hiraditya, mgrang, dexonsmith, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67646
Summary:
Splitting Knowledge retention into Queries in Analysis and Builder into Transform/Utils
allows Queries and Transform/Utils to use Analysis.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77171
This patch adds
- New arguments to getMinPrefetchStride() to let the target decide on a
per-loop basis if software prefetching should be done even with a stride
within the limit of the hw prefetcher.
- New TTI hook enableWritePrefetching() to let a target do write prefetching
by default (defaults to false).
- In LoopDataPrefetch:
- A search through the whole loop to gather information before emitting any
prefetches. This way the target can get information via new arguments to
getMinPrefetchStride() and emit prefetches more selectively. Collected
information includes: Does the loop have a call, how many memory
accesses, how many of them are strided, how many prefetches will cover
them. This is NFC to before as long as the target does not change its
definition of getMinPrefetchStride().
- If a previous access to the same exact address was 'read', and the
current one is 'write', make it a 'write' prefetch.
- If two accesses that are covered by the same prefetch do not dominate
each other, put the prefetch in a block that dominates both of them.
- If a ConstantMaxTripCount is less than ItersAhead, then skip the loop.
- A SystemZ implementation of getMinPrefetchStride().
Review: Ulrich Weigand, Michael Kruse
Differential Revision: https://reviews.llvm.org/D70228
This removes some includes/forward-declarations that don't seem to be necessary in the MCA core headers
Based off a cppclean report
Differential Revision: https://reviews.llvm.org/D77073
Different file formats have different naming style for the debug
sections. The method is implemented for ELF, COFF and Mach-O formats.
Differential Revision: https://reviews.llvm.org/D76276
This is a cleanup and normalization patch that also enables reuse with
Flang later on. A follow up will clean up and move the directive ->
clauses mapping.
Differential Revision: https://reviews.llvm.org/D77112
If we have a must-tail call the callee and caller need to have matching
ABIs. Part of that is alignment which we might modify when we deduce
alignment of arguments of either. Since we would need to keep them in
sync, which is not as simple, we simply avoid deducing alignment for
arguments of the must-tail caller or callee.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D76673
We create a lot of AbstractAttributes and they live as long as
the Attributor does. It seems reasonable to allocate them via a
BumpPtrAllocator owned by the Attributor.
Reviewed By: baziotis
Differential Revision: https://reviews.llvm.org/D76589
Summary:
Currently, the comparison argument used for ATOMIC_CMP_XCHG is legalised
with GetPromotedInteger, which leaves the upper bits of the value
undefind. Since this is used for comparing in an LR/SC loop with a
full-width comparison, we must sign extend it. We introduce a new
getExtendForAtomicCmpSwapArg to complement getExtendForAtomicOps, since
many targets have compare-and-swap instructions (or pseudos) that
correctly handle an any-extend input, and the existing function
determines the extension of the result, whereas we are concerned with
the input.
This is related to https://reviews.llvm.org/D58829, which solved the
issue for ATOMIC_CMP_SWAP_WITH_SUCCESS, but not the simpler
ATOMIC_CMP_SWAP.
Reviewers: asb, lenary, efriedma
Reviewed By: asb
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, evandro, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74453
SUMMARY:
run clang format on the file llvm/include/llvm/MC/MCDirectives.h
Reviewers: Jason liu
Subscribers: rupprecht, seiyai,hiraditya
Differential Revision: https://reviews.llvm.org/D77170