Path.cpp:59: warning: case label value exceeds maximum value for type
magic[0] is a (signed) char, but some case values are unsigned (e.g. 0xde).
When magic[0] was 0xde, the switch has taken the default branch instead of case
0xde branch.
Apparently this was the behaviour with older versions of gcc too, but not with g++.
Now g++-4.4 behaves as gcc, and ignores unsigned case values out of range signed
range.
llvm-svn: 70038
This particular one is undefined behavior (although this
isn't related to the crash), so it will no longer do it
at compile time, which seems better.
llvm-svn: 69990
between registers and the stack may be required with the APCS ABI, but it
isn't tied to using a particular version of the ARM architecture.
llvm-svn: 69978
chained and "flagged" together. I also made a few changes to handle the
chain and flag values more consistently. I found these problems by
inspection so I'm not aware of anything that breaks because of them
(thus no testcase).
llvm-svn: 69977
true), and casts make me nervous and are verbose anyway, so here's a
ConstantInt::getSigned(Ty, int64_t) method. Just overloading
ConstantInt::get() to take an int64_t too would cause ambiguous
overload errors."
Patch by Jeffrey Yasskin!
llvm-svn: 69958
ISD::VECTOR_SHUFFLE now stores an array of integers representing the shuffle
mask internal to the node, rather than taking a BUILD_VECTOR of ConstantSDNodes
as the shuffle mask. A value of -1 represents UNDEF.
In addition to eliminating the creation of illegal BUILD_VECTORS just to
represent shuffle masks, we are better about canonicalizing the shuffle mask,
resulting in substantially better code for some classes of shuffles.
A clean up of x86 shuffle code, and some canonicalizing in DAGCombiner is next.
llvm-svn: 69952
use ISD::EXTRACT_ELEMENT. SelectionDAG has a special fast-path for
the cast of an EXTRACT_ELEMENT with a BUILD_PAIR operand, for the
common case.
llvm-svn: 69948
with the persistent insertion point, and change IndVars to make
use of it. This fixes a bug where IndVars was holding on to a
stale insertion point and forcing the SCEVExpander to continue to
use it.
This fixes PR4038.
llvm-svn: 69892
instructions in order to avoid inserting new ones. However, if
the cast instruction is the SCEVExpander's InsertPt, this
causes subsequently emitted instructions to be inserted near
the cast, and not at the location of the original insert point.
Fix this by adjusting the insert point in such cases.
This fixes PR4009.
llvm-svn: 69808
This fixes a very subtle bug. vr defined by an implicit_def is allowed overlap with any register since it doesn't actually modify anything. However, if it's used as a two-address use, its live range can be extended and it can be spilled. The spiller must take care not to emit a reload for the vn number that's defined by the implicit_def. This is both a correctness and performance issue.
llvm-svn: 69743
type to truncate to should be the number of bits of the value that are
preserved, not the number that are clobbered with sign-extension.
This fixes regressions in ldecod.
llvm-svn: 69704
clang: error: unable to make temporary file: /etc/cc: can't make
unique filename: Permission denied
instead of
clang: error: unable to make temporary file: /etc/cc: can't make
unique filenamePermission denied
for example.
Also, audited the uses of MakeErrMsg to make the prefix strings
consistent (not end with newline/punctuation/space/": ").
llvm-svn: 69626
in the MachineFunction class, renaming it to addLiveIn for consistency with
the same method in MachineBasicBlock. Thanks for Anton for suggesting this.
llvm-svn: 69615
%reg1498<def> = MOV32rm %reg1024, 1, %reg0, 12, %reg0, Mem:LD(4,4) [sunkaddr39 + 0]
%reg1506<def> = MOV32rm %reg1024, 1, %reg0, 8, %reg0, Mem:LD(4,4) [sunkaddr42 + 0]
%reg1486<def> = MOV32rr %reg1506
%reg1486<def> = XOR32rr %reg1486, %reg1498, %EFLAGS<imp-def,dead>
%reg1510<def> = MOV32rm %reg1024, 1, %reg0, 4, %reg0, Mem:LD(4,4) [sunkaddr45 + 0]
=>
%reg1498<def> = MOV32rm %reg2036, 1, %reg0, 12, %reg0, Mem:LD(4,4) [sunkaddr39 + 0]
%reg1506<def> = MOV32rm %reg2037, 1, %reg0, 8, %reg0, Mem:LD(4,4) [sunkaddr42 + 0]
%reg1486<def> = MOV32rr %reg1506
%reg1486<def> = XOR32rr %reg1486, %reg1498, %EFLAGS<imp-def,dead>
%reg1510<def> = MOV32rm %reg2038, 1, %reg0, 4, %reg0, Mem:LD(4,4) [sunkaddr45 + 0]
From linearscan's point of view, each of reg2036, 2037, and 2038 are separate registers, each is "killed" after a single use. The reloaded register is available and it's often clobbered right away. e.g. In thise case reg1498 is allocated EAX while reg2036 is allocated RAX. This means we end up with multiple reloads from the same stack slot in the same basic block.
Now linearscan recognize there are other reloads from same SS in the same BB. So it'll "downgrade" RAX (and its aliases) after reg2036 is allocated until the next reload (reg2037) is done. This greatly increase the likihood reloads from SS are reused.
This speeds up sha1 from OpenSSL by 5.8%. It is also an across the board win for SPEC2000 and 2006.
llvm-svn: 69585
value type union: this field was causing problems for
some compilers on 64 bit systems, presumably because
SimpleTy is 32 bits wide while the other fields are
64 bits wide.
llvm-svn: 69515
type as the vector element type: allow them to be of
a wider integer type than the element type all the way
through the system, and not just as far as LegalizeDAG.
This should be safe because it used to be this way
(the old type legalizer would produce such nodes), so
backends should be able to handle it. In fact only
targets which have legal vector types with an illegal
promoted element type will ever see this (eg: <4 x i16>
on ppc). This fixes a regression with the new type
legalizer (vec_splat.ll). Also, treat SCALAR_TO_VECTOR
the same as BUILD_VECTOR. After all, it is just a
special case of BUILD_VECTOR.
llvm-svn: 69467
Configure was not actually regenerated, but the change last time only touched
this one line, so I'm being lazy and cheating by fixing it manually.
llvm-svn: 69453
for the optimization it's testing to kick in (although
it improves the code, getting rid of all spills).
I don't understand the optimization well enough to
rescue the test, so XFAILing.
llvm-svn: 69409
leaq foo@TLSGD(%rip), %rdi
as part of the instruction sequence. Using a register other than %rdi and then
copying it to %rdi is not valid.
llvm-svn: 69350
register is available and when it's profitable.
e.g.
xorq %r12<kill>, %r13
addq %rax, -184(%rbp)
addq %r13, -184(%rbp)
==>
xorq %r12<kill>, %r13
movq -184(%rbp), %r12
addq %rax, %r12
addq %r13, %r12
movq %r12, -184(%rbp)
Two more instructions, but fewer memory accesses. It can also open up
opportunities for more optimizations.
llvm-svn: 69341
and argument positions but only to the overloaded intrinsic parameters.
Keep a separate list of these overloaded parameters in CodeGenTarget.cpp
so they can be resolved easily. Remove assertions from IntrinsicEmitter.cpp:
they were harmless but confusing, and the assertions elsewhere in TableGen
will catch any incorrect values.
llvm-svn: 69316
locks must be matched with unlocks. Also, use calloc to allocate the
block so that it is properly zero'd. Thanks to Nick Kledzik for
tracking this down.
llvm-svn: 69314
add dependencies on nodes with exactly one successor which is a
COPY_TO_REGCLASS node. In the case that the copy is coalesced
away, the dependence should be on the user of the copy, rather
than the copy itself.
llvm-svn: 69309
size from the integer, requiring zero extension or truncation. Don't
create ZExtInsts with pointer types. This fixes a regression in
consumer-jpeg.
llvm-svn: 69307
Insetad of doing ...
if (inlined_subroutine && known_location)
DW_TAG_inline_subroutine
else
DW_TAG_subprogram
do
if (inlined_subroutine) {
if (known_location)
DW_TAG_inline_subroutine
} else {
DW_TAG_subprogram
}
llvm-svn: 69300
have pointer types, though in contrast to C pointer types, SCEV
addition is never implicitly scaled. This not only eliminates the
need for special code like IndVars' EliminatePointerRecurrence
and LSR's own GEP expansion code, it also does a better job because
it lets the normal optimizations handle pointer expressions just
like integer expressions.
Also, since LLVM IR GEPs can't directly index into multi-dimensional
VLAs, moving the GEP analysis out of client code and into the SCEV
framework makes it easier for clients to handle multi-dimensional
VLAs the same way as other arrays.
Some existing regression tests show improved optimization.
test/CodeGen/ARM/2007-03-13-InstrSched.ll in particular improved to
the point where if-conversion started kicking in; I turned it off
for this test to preserve the intent of the test.
llvm-svn: 69258
to support replacing a node with another that has a superset of
the result types. Use this instead of calling
ReplaceAllUsesOfValueWith for each value.
llvm-svn: 69209
sext around sext(shorter IV + constant), using a
longer IV instead, when it can figure out the
add can't overflow. This comes up a lot in
subscripting; mainly affects 64 bit.
llvm-svn: 69123
llvm.dbg.region.end instrinsic. This nested llvm.dbg.func.start/llvm.dbg.region.end pair now enables DW_TAG_inlined_subroutine support in code generator.
llvm-svn: 69118
operator is used by a CopyToReg to export the value to a different
block, don't reuse the CopyToReg's register for the subreg operation
result if the register isn't precisely the right class for the
subreg operation.
Also, rename the h-registers.ll test, now that there are more
than one.
llvm-svn: 69087
Makes llvmc show error messages printed by child processes when run from the
Cygwin/MSYS shell. Since ExecuteAndWait does not return until the child program
has finished execution, this change should be harmless.
llvm-svn: 69082
promoted to legal types without changing the type of the vector. This is
following a suggestion from Duncan
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2009-February/019923.html).
The transformation that used to be done during type legalization is now
postponed to DAG legalization. This allows the BUILD_VECTORs to be optimized
and potentially handled specially by target-specific code.
It turns out that this is also consistent with an optimization done by the
DAG combiner: a BUILD_VECTOR and INSERT_VECTOR_ELT may be combined by
replacing one of the BUILD_VECTOR operands with the newly inserted element;
but INSERT_VECTOR_ELT allows its scalar operand to be larger than the
element type, with any extra high bits being implicitly truncated. The
result is a BUILD_VECTOR where one of the operands has a type larger the
the vector element type.
Any code that operates on BUILD_VECTORs may now need to be aware of the
potential type discrepancy between the vector element type and the
BUILD_VECTOR operands. This patch updates all of the places that I could
find to handle that case.
llvm-svn: 68996
- Add patterns for h-register extract, which avoids a shift and mask,
and in some cases a temporary register.
- Add address-mode matching for turning (X>>(8-n))&(255<<n), where
n is a valid address-mode scale value, into an h-register extract
and a scaled-offset address.
- Replace X86's MOV32to32_ and related instructions with the new
target-independent COPY_TO_SUBREG instruction.
On x86-64 there are complicated constraints on h registers, and
CodeGen doesn't currently provide a high-level way to express all of them,
so they are handled with a bunch of special code. This code currently only
supports extracts where the result is used by a zero-extend or a store,
though these are fairly common.
These transformations are not always beneficial; since there are only
4 h registers, they sometimes require extra move instructions, and
this sometimes increases register pressure because it can force out
values that would otherwise be in one of those registers. However,
this appears to be relatively uncommon.
llvm-svn: 68962
This will be used to replace things like X86's MOV32to32_.
Enhance ScheduleDAGSDNodesEmit to be more flexible and robust
in the presense of subregister superclasses and subclasses. It
can now cope with the definition of a virtual register being in
a subclass of a use.
Re-introduce the code for recording register superreg classes and
subreg classes. This is needed because when subreg extracts and
inserts get coalesced away, the virtual registers are left in
the correct subclass.
llvm-svn: 68961
ISD::SIGN_EXTEND_INREG. Tablegen-generated code can handle
these cases, and the scheduling issues observed earlier
appear to be resolved now.
llvm-svn: 68959
in multiple classes in the case that the classes are all
in subset/superset relations. This function is used by the
fast-isel emitter, which always wants the super-most set.
llvm-svn: 68957
the subreg field to 0, since the subreg field is only used
for virtual register subregs. This doesn't change
current functionality; it just eliminates bogus noise from
debug output.
llvm-svn: 68955