that if two modules A and B both contain a declaration of a tag such
as
struct X;
and those two modules are unrelated, the two declarations of X will be
merged into a single redeclaration chain.
llvm-svn: 147488
modules. This leaves us without an explicit syntax for importing
modules in C/C++, because such a syntax needs to be discussed
first. In Objective-C/Objective-C++, the @import syntax is used to
import modules.
Note that, under -fmodules, C/C++ programs can import modules via the
#include mechanism when a module map is in place for that header. This
allows us to work with modules in C/C++ without committing to a syntax.
llvm-svn: 147467
member function template, since the behavior is identical for
ObjCInterfaceDecl and ObjCProtocolDecl. It's expected that all
redeclarable entities will have the same behavior.
llvm-svn: 147450
module imports from -fauto-module-import to -fmodules. The new name
will eventually be used to enable modules, and the #include/#import
mapping is a crucial part of the feature.
llvm-svn: 147447
Clang driver. This involves a bunch of silly option parsing code to try
to carefully emulate GCC's options. Currently, this takes a conservative
approach, and unless all of the unsafe optimizations are enabled, none
of them are. The fine grained control doesn't seem particularly useful.
If it ever becomes useful, we can add that to LLVM first, and then
expose it here.
This also fixes a few tiny bugs in the flag management around
-fhonor-infinities and -fhonor-nans; the flags now form proper sets both
for enabling and disabling, with the last flag winning.
I've also implemented a moderately terrifying GCC feature where
a language change is also provided by the '-ffast-math' flag by defining
the __FAST_MATH__ preprocessor macro. This feature is tracked and
serialized in the frontend but it isn't used yet. A subsequent patch
will add the preprocessor macro and tests for it.
I've manually tested that codegen appears to respect this, but I've not
dug in enough to see if there is an easy way to test codegen options w/o
relying on the particulars of LLVM's optimizations.
llvm-svn: 147434
for Objective-C protocols, including:
- Using the first declaration as the canonical declaration
- Using the definition as the primary DeclContext
- Making sure that all declarations have a pointer to the definition
data, and that we know which declaration is the definition
- Serialization support for redeclaration chains and for adding
definitions to already-serialized declarations.
However, note that we're not taking advantage of much of this code
yet, because we're still re-using ObjCProtocolDecls.
llvm-svn: 147410
separately-allocated DefinitionData structure. Introduce various
functions that will help with the separation of declarations from
definitions (isThisDeclarationADefinition(), hasDefinition(),
getDefinition()).
llvm-svn: 147408
features needed for a particular module to be available. This allows
mixed-language modules, where certain headers only work under some
language variants (e.g., in C++, std.tuple might only be available in
C++11 mode).
llvm-svn: 147387
Also temporarily remove the assumption from IR gen that we can emit IR for every
constant we can fold, since it isn't currently true in C++11, to fix PR11676.
Original comment from r147271:
constexpr: perform zero-initialization prior to / instead of performing a
constructor call when appropriate. Thanks to Eli for spotting this.
llvm-svn: 147384