r312318 - Debug info for variables whose type is shrinked to bool
r312325, r312424, r312489 - Test case for r312318
Revision 312318 introduced a null dereference bug.
Details in https://bugs.llvm.org/show_bug.cgi?id=34490
llvm-svn: 312758
This patch provides such debug information for integer
variables whose type is shrinked to bool by providing
dwarf expression which returns either constant initial
value or other value.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D35994
llvm-svn: 312318
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
llvm-svn: 305386
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: pcc, echristo, aprantl
Reviewed By: aprantl
Subscribers: fhahn, aprantl, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33892
llvm-svn: 305304
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
- introduced in r300522 and found via the Swift LLDB testsuite.
The fix is to set the location kind to memory whenever an FrameIndex
location is emitted.
rdar://problem/31707602
llvm-svn: 300793
- introduced in r300522 and found via the Swift LLDB testsuite.
The fix is to set the location kind to memory whenever an FrameIndex
location is emitted.
rdar://problem/31707602
llvm-svn: 300790
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
- describe a variable in a register
- consist of only a DW_OP_reg
2. Memory location descriptions
- describe the address of a variable
3. Implicit location descriptions
- describe the value of a variable
- end with DW_OP_stack_value & friends
The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident. This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.
This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.
There are two major changes in this patch:
I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8
DBG_VALUE, RAX --> DW_OP_reg0 +0
DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0
All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.
https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>
Differential Revision: https://reviews.llvm.org/D31439
llvm-svn: 300522
If a register location can only be described by a complex expression
(i.e., multiple subregisters) it doesn't safely compose with another
complex expression. For example, it is not possible to apply a
DW_OP_deref operation to multiple DW_OP_pieces.
llvm-svn: 298472
until the rest of the expression is known.
This is still an NFC refactoring in preparation of a subsequent bugfix.
This reapplies r298388 with a bugfix for non-physical frame registers.
llvm-svn: 298471
If a register location can only be described by a complex expression
(i.e., multiple subregisters) it doesn't safely compose with another
complex expression. For example, it is not possible to apply a
DW_OP_deref operation to multiple DW_OP_pieces.
llvm-svn: 298389
Citing http://bugs.llvm.org/show_bug.cgi?id=32288
The DWARF generated by LLVM includes this location:
0x55 0x93 0x04 DW_OP_reg5 DW_OP_piece(4) When GCC's DWARF is simply
0x55 (DW_OP_reg5) without the DW_OP_piece. I believe it's reasonable
to assume the DWARF consumer knows which part of a register
logically holds the value (low bytes, high bytes, how many bytes,
etc) for a primitive value like an integer.
This patch gets rid of the redundant DW_OP_piece when a subregister is
at offset 0. It also adds previously missing subregister masking when
a subregister is followed by another operation.
(This reapplies r297960 with two additional testcase updates).
rdar://problem/31069390
https://reviews.llvm.org/D31010
llvm-svn: 297965
Citing http://bugs.llvm.org/show_bug.cgi?id=32288
The DWARF generated by LLVM includes this location:
0x55 0x93 0x04 DW_OP_reg5 DW_OP_piece(4) When GCC's DWARF is simply
0x55 (DW_OP_reg5) without the DW_OP_piece. I believe it's reasonable
to assume the DWARF consumer knows which part of a register
logically holds the value (low bytes, high bytes, how many bytes,
etc) for a primitive value like an integer.
This patch gets rid of the redundant DW_OP_piece when a subregister is
at offset 0. It also adds previously missing subregister masking when
a subregister is followed by another operation.
rdar://problem/31069390
https://reviews.llvm.org/D31010
llvm-svn: 297960
When DwarfExpression is emitting a fragment that is located in a
register and that fragment is smaller than the register, and the
register must be composed from sub-registers (are you still with me?)
the last DW_OP_piece operation must not be larger than the size of the
fragment itself, since the last piece of the fragment could be smaller
than the last subregister that is being emitted.
rdar://problem/29779065
llvm-svn: 290324
LLVM's use of DW_OP_bit_piece is incorrect and a based on a
misunderstanding of the wording in the DWARF specification. The offset
argument of DW_OP_bit_piece refers to the offset into the location
that is on the top of the DWARF expression stack, and not an offset
into the source variable. This has since also been clarified in the
DWARF specification.
This patch fixes all uses of DW_OP_bit_piece to emit the correct
offset and simplifies the DwarfExpression class to semi-automaticaly
emit empty DW_OP_pieces to adjust the offset of the source variable,
thus simplifying the code using DwarfExpression.
While this is an incompatible bugfix, in practice I don't expect this
to be much of a problem since LLVM's old interpretation and the
correct interpretation of DW_OP_bit_piece differ only when there are
gaps in the fragmented locations of the described variables or if
individual fragments are smaller than a byte. LLDB at least won't
interpret locations with gaps in them because is has no way to present
undefined bits in a variable, and there is a high probability that an
old-form expression will be malformed when interpreted correctly,
because the DW_OP_bit_piece offset will be outside of the location at
the top of the stack.
As a nice side-effect, this patch enables us to use a more efficient
encoding for subregisters: In order to express a sub-register at a
non-zero offset we now use a DW_OP_bit_piece instead of shifting the
value into place manually.
This patch also adds missing test coverage for code paths that weren't
exercised before.
<rdar://problem/29335809>
Differential Revision: https://reviews.llvm.org/D27550
llvm-svn: 289266
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
This fixes an embarrassing bug when emitting .debug_loc entries for 64-bit+ constants,
which were previously silently truncated to 32 bits.
<rdar://problem/26843232>
llvm-svn: 273736
We are about to start using DIEDwarfExpression to create global variable
DIEs, which happens before we generate code for functions.
Differential Revision: http://reviews.llvm.org/D20412
llvm-svn: 270257
This patch closes a gap in the DWARF backend that caused LLVM to drop
debug info for floating point variables that were constant for part of
their scope. Floating point constants are emitted as one or more
DW_OP_constu joined via DW_OP_piece.
This fixes a regression caught by the LLDB testsuite that I introduced
in r262247 when we stopped blindly expanding the range of singular
DBG_VALUEs to span the entire scope and started to emit location lists
with accurate ranges instead.
Also deletes a now-impossible testcase (debug-loc-empty-entries).
<rdar://problem/25448338>
llvm-svn: 265760
Summary: I noticed an object file with `DW_OP_reg4 DW_OP_breg4 0` as a DWARF expression,
which I traced to a missing break (and `++I`) in this code snippet.
While I was at it, I also added support for a few other corner cases
along the same lines that I could think of.
Test Plan: Hand-crafted test case to exercises these cases is included.
Reviewers: echristo, dblaikie, aprantl
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10302
llvm-svn: 239380
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Remove special iterators from `DIExpression` in favour of same in
`MDExpression`. There should be no functionality change here.
Note that the APIs are slightly different: `getArg(unsigned)` counts
from 0, not 1, in the `MDExpression` version of the iterator.
llvm-svn: 234285
frame register before checking if there is a DWARF register number for it.
Thanks to H.J. Lu for diagnosing this and providing the testcase!
llvm-svn: 231121
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 without the assertion in DebugLocEntry::finalize()
because not all Machine registers can be lowered into DWARF register
numbers and floating point constants cannot be expressed.
llvm-svn: 231023
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 with a relaxed assertion in DebugLocEntry::finalize()
that allows for empty DWARF expressions for constant FP values.
llvm-svn: 230975