Summary:
Some variables show up in Visual Studio as "optimized out" even in -O0
-Od builds. This change fixes two issues that would cause this to
happen. The first issue is that not all DIExpressions we generate were
recognized by the CodeView writer. This has been addressed by adding
support for DW_OP_constu, DW_OP_minus, and DW_OP_plus. The second
issue is that we had no way to encode DW_OP_deref in CodeView. We get
around that by changinge the type we encode in the debug info to be
a reference to the type in the source code.
This fixes PR34261.
The reland adds two extra checks to the original: It checks if the
DbgVariableLocation is valid before checking any of its fields, and
it only emits ranges with nonzero registers.
Reviewers: aprantl, rnk, zturner
Reviewed By: rnk
Subscribers: mgorny, llvm-commits, aprantl, hiraditya
Differential Revision: https://reviews.llvm.org/D36907
llvm-svn: 312034
Summary:
Some variables show up in Visual Studio as "optimized out" even in -O0
-Od builds. This change fixes two issues that would cause this to
happen. The first issue is that not all DIExpressions we generate were
recognized by the CodeView writer. This has been addressed by adding
support for DW_OP_constu, DW_OP_minus, and DW_OP_plus. The second
issue is that we had no way to encode DW_OP_deref in CodeView. We get
around that by changinge the type we encode in the debug info to be
a reference to the type in the source code.
This fixes PR34261.
Reviewers: aprantl, rnk, zturner
Reviewed By: rnk
Subscribers: mgorny, llvm-commits, aprantl, hiraditya
Differential Revision: https://reviews.llvm.org/D36907
llvm-svn: 311957
S_UDT symbols are the debugger's "index" for all the structs,
typedefs, classes, and enums in a program. If any of those
structs/classes don't have a complete declaration, or if there
is a typedef to something that doesn't have a complete definition,
then emitting the S_UDT is unhelpful because it doesn't give
the debugger enough information to do anything useful. On the
other hand, it results in a huge size blow-up in the resulting
PDB, which is exacerbated by an order of magnitude when linking
with /DEBUG:FASTLINK.
With this patch, we drop S_UDT records for types that refer either
directly or indirectly (e.g. through a typedef, pointer, etc) to
a class/struct/union/enum without a complete definition. This
brings us about 50% of the way towards parity with /DEBUG:FASTLINK
PDBs generated from cl-compiled object files.
Differential Revision: https://reviews.llvm.org/D37162
llvm-svn: 311904
widely used processors.
This occured to me when I saw that we were generating 'inc' and 'dec'
when for Haswell and newer we shouldn't. However, there were a few "X is
slow" things that we should probably just set.
I've avoided any of the "X is fast" features because most of those would
be pretty serious regressions on processors where X isn't actually fast.
The slow things are likely to be negligible costs on processors where
these aren't slow and a significant win when they are slow.
In retrospect this seems somewhat obvious. Not sure why we didn't do
this a long time ago.
Differential Revision: https://reviews.llvm.org/D36947
llvm-svn: 311318
Previously we limited ourselves to only emitting nested classes, but we
need other kinds of types as well.
This fixes the Visual Studio STL visualizers, so that users can
visualize std::string and other objects.
llvm-svn: 310410
In the last half-dozen commits to LLVM I removed code that became dead
after removing the offset parameter from llvm.dbg.value gradually
proceeding from IR towards the backend. Before I can move on to
DwarfDebug and friends there is one last side-called offset I need to
remove: This patch modifies PrologEpilogInserter's use of the
DBG_VALUE's offset argument to use a DIExpression instead. Because the
PrologEpilogInserter runs at the Machine level I had to play a little
trick with a named llvm.dbg.mir node to get the DIExpressions to print
in MIR dumps (which print the llvm::Module followed by the
MachineFunction dump).
I also had to add rudimentary DwarfExpression support to CodeView and
as a side-effect also fixed a bug (CodeViewDebug::collectVariableInfo
was supposed to give up on variables with complex DIExpressions, but
would fail to do so for fragments, which are also modeled as
DIExpressions).
With this last holdover removed we will have only one canonical way of
representing offsets to debug locations which will simplify the code
in DwarfDebug (and future versions of CodeViewDebug once it starts
handling more complex expressions) and make it easier to reason about.
This patch is NFC-ish: All test case changes are for assembler
comments and the binary output does not change.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D36125
llvm-svn: 309751
Summary:
We already have information about static alloca stack locations in our
side table. Emitting instructions for them is inefficient, and it only
happens when the address of the alloca has been materialized within the
current block, which isn't often.
Reviewers: aprantl, probinson, dblaikie
Subscribers: jfb, dschuff, sbc100, jgravelle-google, hiraditya, llvm-commits, aheejin
Differential Revision: https://reviews.llvm.org/D36117
llvm-svn: 309729
When the first instruction of a basic block has no location (consider a
LEA materializing the address of an alloca for a call), we want to start
the line table for the block with the first valid source location in the
block. We need to ignore DBG_VALUE instructions during this scan to get
decent line tables.
llvm-svn: 309628
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
Avoid duplicating DictScope with hand-written names everywhere. Print
the S_-prefixed symbol kind for every record. This should make it easier
to search for certain kinds of records when debugging PDB linking.
llvm-svn: 307732
If the instructions at the beginning of the block have no location,
we're better off using the location of the first instruction in the
current basic block. At the very least, that instruction post-dominates
this one, whereas if we don't emit a .cv_loc directive, we end up using
the potentially invalid location that falls through from the previous
block.
We could probably do better here by emitting some kind of ".cv_loc end"
directive that stops the line table entry of the previous .cv_loc
directive from bleeding out of its basic block. This would improve the
line table when an entire MBB has no valid location info.
llvm-svn: 306889
We forgot to serialize these because llvm-readobj didn't dump them. They
are typically all zeros in an object file. The linker fills them in with
relocations before adding them to the PDB. Now we can properly round
trip these symbols through pdb2yaml -> yaml2pdb.
I made these fields optional with a zero default so that we can elide
them from our test cases.
llvm-svn: 305857
CodeViewDebug sets Asm to nullptr to disable debug info generation. You
can get a .ll file like no-cus.ll from 'clang -gcodeview -g0', which
happens in the ubsan test suite.
llvm-svn: 302923
This reverts commit r302461.
It appears to be causing failures compiling gtest with debug info on the
Linux sanitizer bot. I was unable to reproduce the failure locally,
however.
llvm-svn: 302504
Summary:
An llvm.dbg.declare of a static alloca is always added to the
MachineFunction dbg variable map, so these values are entirely
redundant. They survive all the way through codegen to be ignored by
DWARF emission.
Effectively revert r113967
Two bugpoint-reduced test cases from 2012 broke as a result of this
change. Despite my best efforts, I haven't been able to rewrite the test
case using dbg.value. I'm not too concerned about the lost coverage
because these were reduced from the test-suite, which we still run.
Reviewers: aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32920
llvm-svn: 302461
Compiler emitted synthetic types may not have an associated DIFile
(translation unit). In such a case, when generating CodeView debug type
information, we would attempt to compute an absolute filepath which
would result in a segfault due to a NULL DIFile*. If there is no source
file associated with the type, elide the type index entry for the type
and record the type information. This actually results in higher
fidelity debug information than clang/C2 as of this writing.
Resolves PR32668!
llvm-svn: 302085
Fixes the issue highlighted in
http://lists.llvm.org/pipermail/cfe-dev/2014-June/037500.html.
The DW_AT_decl_file and DW_AT_decl_line attributes on namespaces can
prevent LLVM from uniquing types that are in the same namespace. They
also don't carry any meaningful information.
rdar://problem/17484998
Differential Revision: https://reviews.llvm.org/D32648
llvm-svn: 301706
If we have an array of a user-defined aggregates for which there was an
ODR violation, then the array size will not necessarily match the number
of elements times the size of the element.
Fixes PR32383
llvm-svn: 298750
MSVC link.exe cannot handle associative sections that refer later
sections in the section header. Technically, such COFF object doesn't
violate the Microsoft COFF spec, as the spec doesn't say anything
about that, but still we should avoid doing that to make it compatible
with MS tools.
This patch assigns smaller section numbers to non-associative sections
and larger numbers to associative sections. This should resolve the
compatibility issue.
Differential Revision: https://reviews.llvm.org/D30080
llvm-svn: 295464
This patch renumbers the metadata nodes in debug info testcases after
https://reviews.llvm.org/D26769. This is a separate patch because it
causes so much churn. This was implemented with a python script that
pipes the testcases through llvm-as - | llvm-dis - and then goes
through the original and new output side-by side to insert all
comments at a close-enough location.
Differential Revision: https://reviews.llvm.org/D27765
llvm-svn: 290292
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
Enable codeview emission for windows-itanium targets. Co-opt an existing
test (which is derived from a C source file and should therefore be
identical across the Itanium and MS ABIs).
Differential Revision: https://reviews.llvm.org/D26693
llvm-svn: 287567
This reapplies revision 285093. Original commit message:
The branch folding pass tail merges blocks into a common-tail. However, the
tail retains the debug information from one of the original inputs to the
merge (chosen randomly). This is a problem for sampled-based PGO, as hits
on the common-tail will be attributed to whichever block was chosen,
irrespective of which path was actually taken to the common-tail.
This patch fixes the issue by nulling the debug location for the common-tail.
Differential Revision: https://reviews.llvm.org/D25742
llvm-svn: 285212
Summary:
Fixes PR28281.
MSVC lists indirect virtual base classes in the field list of a class,
using LF_IVBCLASS records. This change makes LLVM emit such records
when processing DW_TAG_inheritance tags with the DIFlagVirtual and
(newly introduced) DIFlagIndirect tags.
Reviewers: rnk, ruiu, zturner
Differential Revision: https://reviews.llvm.org/D25578
llvm-svn: 285130
This reverts r285093, as it caused unexpected buildbot failures on
clang-ppc64le-linux, clang-ppc64be-linux, clang-ppc64be-linux-multistage
and clang-ppc64be-linux-lnt. Failing test ubsan/TestCases/TypeCheck/vptr.cpp.
llvm-svn: 285110
The branch folding pass tail merges blocks into a common-tail. However, the
tail retains the debug information from one of the original inputs to the
merge (chosen randomly). This is a problem for sampled-based PGO, as hits
on the common-tail will be attributed to whichever block was chosen,
irrespective of which path was actually taken to the common-tail.
This patch fixes the issue by nulling the debug location for the common-tail.
Differential Revision: https://reviews.llvm.org/D25742
llvm-svn: 285093
Summary:
The original heuristic to break critical edge during machine sink is relatively conservertive: when there is only one instruction sinkable to the critical edge, it is likely that the machine sink pass will not break the critical edge. This leads to many speculative instructions executed at runtime. However, with profile info, we could model the splitting benefits: if the critical edge has 50% taken rate, it would always be beneficial to split the critical edge to avoid the speculated runtime instructions. This patch uses profile to guide critical edge splitting in machine sink pass.
The performance impact on speccpu2006 on Intel sandybridge machines:
spec/2006/fp/C++/444.namd 25.3 +0.26%
spec/2006/fp/C++/447.dealII 45.96 -0.10%
spec/2006/fp/C++/450.soplex 41.97 +1.49%
spec/2006/fp/C++/453.povray 36.83 -0.96%
spec/2006/fp/C/433.milc 23.81 +0.32%
spec/2006/fp/C/470.lbm 41.17 +0.34%
spec/2006/fp/C/482.sphinx3 48.13 +0.69%
spec/2006/int/C++/471.omnetpp 22.45 +3.25%
spec/2006/int/C++/473.astar 21.35 -2.06%
spec/2006/int/C++/483.xalancbmk 36.02 -2.39%
spec/2006/int/C/400.perlbench 33.7 -0.17%
spec/2006/int/C/401.bzip2 22.9 +0.52%
spec/2006/int/C/403.gcc 32.42 -0.54%
spec/2006/int/C/429.mcf 39.59 +0.19%
spec/2006/int/C/445.gobmk 26.98 -0.00%
spec/2006/int/C/456.hmmer 24.52 -0.18%
spec/2006/int/C/458.sjeng 28.26 +0.02%
spec/2006/int/C/462.libquantum 55.44 +3.74%
spec/2006/int/C/464.h264ref 46.67 -0.39%
geometric mean +0.20%
Manually checked 473 and 471 to verify the diff is in the noise range.
Reviewers: rengolin, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24818
llvm-svn: 284757
- Add alignment attribute to DIVariable family
- Modify bitcode format to match new DIVariable representation
- Update tests to match these changes (also add bitcode upgrade test)
- Expect that frontend passes non-zero align value only when it is not default
(was forcibly aligned by alignas()/_Alignas()/__atribute__(aligned())
Differential Revision: https://reviews.llvm.org/D25073
llvm-svn: 284678
Summary:
The original heuristic to break critical edge during machine sink is relatively conservertive: when there is only one instruction sinkable to the critical edge, it is likely that the machine sink pass will not break the critical edge. This leads to many speculative instructions executed at runtime. However, with profile info, we could model the splitting benefits: if the critical edge has 50% taken rate, it would always be beneficial to split the critical edge to avoid the speculated runtime instructions. This patch uses profile to guide critical edge splitting in machine sink pass.
The performance impact on speccpu2006 on Intel sandybridge machines:
spec/2006/fp/C++/444.namd 25.3 +0.26%
spec/2006/fp/C++/447.dealII 45.96 -0.10%
spec/2006/fp/C++/450.soplex 41.97 +1.49%
spec/2006/fp/C++/453.povray 36.83 -0.96%
spec/2006/fp/C/433.milc 23.81 +0.32%
spec/2006/fp/C/470.lbm 41.17 +0.34%
spec/2006/fp/C/482.sphinx3 48.13 +0.69%
spec/2006/int/C++/471.omnetpp 22.45 +3.25%
spec/2006/int/C++/473.astar 21.35 -2.06%
spec/2006/int/C++/483.xalancbmk 36.02 -2.39%
spec/2006/int/C/400.perlbench 33.7 -0.17%
spec/2006/int/C/401.bzip2 22.9 +0.52%
spec/2006/int/C/403.gcc 32.42 -0.54%
spec/2006/int/C/429.mcf 39.59 +0.19%
spec/2006/int/C/445.gobmk 26.98 -0.00%
spec/2006/int/C/456.hmmer 24.52 -0.18%
spec/2006/int/C/458.sjeng 28.26 +0.02%
spec/2006/int/C/462.libquantum 55.44 +3.74%
spec/2006/int/C/464.h264ref 46.67 -0.39%
geometric mean +0.20%
Manually checked 473 and 471 to verify the diff is in the noise range.
Reviewers: rengolin, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24818
llvm-svn: 284545
Summary:
The original heuristic to break critical edge during machine sink is relatively conservertive: when there is only one instruction sinkable to the critical edge, it is likely that the machine sink pass will not break the critical edge. This leads to many speculative instructions executed at runtime. However, with profile info, we could model the splitting benefits: if the critical edge has 50% taken rate, it would always be beneficial to split the critical edge to avoid the speculated runtime instructions. This patch uses profile to guide critical edge splitting in machine sink pass.
The performance impact on speccpu2006 on Intel sandybridge machines:
spec/2006/fp/C++/444.namd 25.3 +0.26%
spec/2006/fp/C++/447.dealII 45.96 -0.10%
spec/2006/fp/C++/450.soplex 41.97 +1.49%
spec/2006/fp/C++/453.povray 36.83 -0.96%
spec/2006/fp/C/433.milc 23.81 +0.32%
spec/2006/fp/C/470.lbm 41.17 +0.34%
spec/2006/fp/C/482.sphinx3 48.13 +0.69%
spec/2006/int/C++/471.omnetpp 22.45 +3.25%
spec/2006/int/C++/473.astar 21.35 -2.06%
spec/2006/int/C++/483.xalancbmk 36.02 -2.39%
spec/2006/int/C/400.perlbench 33.7 -0.17%
spec/2006/int/C/401.bzip2 22.9 +0.52%
spec/2006/int/C/403.gcc 32.42 -0.54%
spec/2006/int/C/429.mcf 39.59 +0.19%
spec/2006/int/C/445.gobmk 26.98 -0.00%
spec/2006/int/C/456.hmmer 24.52 -0.18%
spec/2006/int/C/458.sjeng 28.26 +0.02%
spec/2006/int/C/462.libquantum 55.44 +3.74%
spec/2006/int/C/464.h264ref 46.67 -0.39%
geometric mean +0.20%
Manually checked 473 and 471 to verify the diff is in the noise range.
Reviewers: rengolin, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24818
llvm-svn: 284541
In the MS ABI, the frontend is supposed to MD5 such pathologically long
names. LLVM should still defend itself from long names, though.
Fixes part of PR29098.
llvm-svn: 284136
If we don't truncate, LLVM asserts when the label difference doesn't fit
in a 16 bit field. This patch truncates two kinds of data: trailing null
terminated names in symbol records, and inline line tables. The inline
line table test that I have is too large (many MB), so I'm not checking
it in.
Hopefully fixes PR28264.
llvm-svn: 283403
This allows LLVM to describe locations of aggregate variables that have
been split by SROA.
Fixes PR29141
Reviewers: amccarth, majnemer
Differential Revision: https://reviews.llvm.org/D25253
llvm-svn: 283388
The VS debugger doesn't appear to understand the 0x68 or 0x69 type
indices, which were probably intended for use on a platform where a C
'int' is 8 bits. So, use the character types instead. Clang was already
using the character types because '[u]int8_t' is usually defined in
terms of 'char'.
See the Rust issue for screenshots of what VS does:
https://github.com/rust-lang/rust/issues/36646
Fixes PR30552
llvm-svn: 282739