As part of this cleanup a couple of unnecessary isl::manage(obj.copy()) pattern
are eliminated as well.
We checked for all potential cleanups by scanning for:
"grep -R isl::manage\( lib/ | grep copy"
llvm-svn: 325558
VirtualUse::create is only called for MemoryKind::Value, but its
consistency nonetheless checked in verifyUses(). PHI uses are always
inter-stmt dependencies, which was not considered by the constructor
method. The virtual and non-virtual execution paths were the same, such
that verifyUses did not encounter any inconsistencies.
llvm-svn: 323283
Print same or similar structure elements together. Previously, the
value could take more importance that the space structure if visited
first in the space nest tree.
Before:
{
Left[0] -> Right[i]: i >= 0;
Left[1] -> AnotherRight[i];
Left[2] -> Right[-1]
}
After:
{
Left[0] -> Right[i]: i >= 0;
Left[2] -> Right[-1];
Left[1] -> AnotherRight[i]
}
llvm-svn: 322581
Summary:
This can be seen as a follow-up on my previous differential [D33411](https://reviews.llvm.org/D33411).
We received a bug report where this error was triggered. I have tried my best to recreate the issue in a minimal lit testcase which is also part of this differential.
I only handle return instructions as predecessors to a virtual TLR-exit right now. From inspecting the codebase, it seems `unreachable` instructions may also be of interest here. If requested, I can extend my patches to consider them as well. I would also apply this on `ScopHelper.cpp::isErrorBlock` (see D33411), of course.
Reviewers: philip.pfaffe, bollu
Reviewed By: bollu
Subscribers: Meinersbur, pollydev, llvm-commits
Tags: #polly
Differential Revision: https://reviews.llvm.org/D40492
llvm-svn: 319431
Summary:
Most changes are mechanical, but in one place I changed the program semantics
by fixing a likely bug:
In `Scop::hasFeasibleRuntimeContext()`, I'm now explicitely handling the
error-case. Before, when the call to `addNonEmptyDomainConstraints()`
returned a null set, this (probably) accidentally worked because
isl_bool_error converts to true. I'm checking for nullptr now.
Reviewers: grosser, Meinersbur, bollu
Reviewed By: Meinersbur
Subscribers: nemanjai, kbarton, pollydev, llvm-commits
Differential Revision: https://reviews.llvm.org/D39971
llvm-svn: 318632
Previously we marked scalars based on the original access function. However,
when a scalar read access is redirected, the original definition
(or incoming values of a PHI) is not used anymore, and can be deleted
(unless referenced by use that has not been redirected).
llvm-svn: 316660
These functions print a multi-line and sorted representation of unions
of polyhedra. Each polyhedron (basic_{ast/map}) has its own line.
First sort key is the polyhedron's hierachical space structure.
Secondary sort key is the lower bound of the polyhedron, which should
ensure that the polyhedral are printed in approximately ascending order.
Example output of dumpPw():
[p_0, p_1, p_2] -> {
Stmt0[0] -> [0, 0];
Stmt0[i0] -> [i0, 0] : 0 < i0 <= 5 - p_2;
Stmt1[0] -> [0, 2] : p_1 = 1 and p_0 = -1;
Stmt2[0] -> [0, 1] : p_1 >= 3 + p_0;
Stmt3[0] -> [0, 3];
}
In contrast dumpExpanded() prints each point in the sets, unless there
is an unbounded dimension that cannot be expandend.
This is useful for reduced test cases where the loop counts are set to
some constant to understand a bug.
Example output of dumpExpanded(
{ [MemRef_A[i0] -> [i1]] : (exists (e0 = floor((1 + i1)/3): i0 = 1 and
3e0 <= i1 and 3e0 >= -1 + i1 and i1 >= 15 and i1 <= 25)) or (exists (e0
= floor((i1)/3): i0 = 0 and 3e0 < i1 and 3e0 >= -2 + i1 and i1 > 0 and
i1 <= 11)) }):
{
[MemRef_A[0] ->[1]];
[MemRef_A[0] ->[2]];
[MemRef_A[0] ->[4]];
[MemRef_A[0] ->[5]];
[MemRef_A[0] ->[7]];
[MemRef_A[0] ->[8]];
[MemRef_A[0] ->[10]];
[MemRef_A[0] ->[11]];
[MemRef_A[1] ->[15]];
[MemRef_A[1] ->[16]];
[MemRef_A[1] ->[18]];
[MemRef_A[1] ->[19]];
[MemRef_A[1] ->[21]];
[MemRef_A[1] ->[22]];
[MemRef_A[1] ->[24]];
[MemRef_A[1] ->[25]]
}
Differential Revision: https://reviews.llvm.org/D38349
llvm-svn: 314525
In order for debuggers to be able to call an inline method, it must have
been instantiated somewhere. The dump() methods are usually not used, so
add an instantiation in debug builds.
This allows to call .dump() on any isl++ object from the gcc/gdb and
Visual Studio debugger in debug builds with assertions enabled.
In optimized builds, even with assertions enabled, the dump() methods
are also inlined in GICHelper.cpp, so no externally visible symbols
will be available either.
Differential Revision: https://reviews.llvm.org/D38198
llvm-svn: 314395
In case a PHI node follows an error block we can assume that the incoming value
can only come from the node that is not an error block. As a result, conditions
that seemed non-affine before are now in fact affine.
This is a recommit of r312663 after fixing
test/Isl/CodeGen/phi_after_error_block_outside_of_scop.ll
llvm-svn: 314075
This reverts commit
r312410 - [ScopDetect/Info] Look through PHIs that follow an error block
The commit caused generation of invalid IR due to accessing a parameter
that does not dominate the SCoP.
llvm-svn: 312663
In case a PHI node follows an error block we can assume that the incoming value
can only come from the node that is not an error block. As a result, conditions
that seemed non-affine before are now in fact affine.
llvm-svn: 312410
Mark scalar dependences for different statements belonging to same BB
as 'Inter'.
Contributed-by: Nandini Singhal <cs15mtech01004@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D37147
llvm-svn: 312324
Summary:
After region statements now also have instruction lists, this is a
straightforward extension.
Reviewers: Meinersbur, bollu, singam-sanjay, gareevroman
Reviewed By: Meinersbur
Subscribers: hfinkel, pollydev, llvm-commits
Tags: #polly
Differential Revision: https://reviews.llvm.org/D37298
llvm-svn: 312249
The intrinsics memset, memcopy and memmove do have their memory accesses
modeled by ScopBuilder. Do not consider them error-case behavior.
Test case will come with a future patch that requires memory intrinsics
outside of error blocks.
llvm-svn: 312021
Commit r252725 introduced a "return false" if an ignored intrinsics was
found. The consequence of this was that the mere existence of an ignored
intrinsic (such as llvm.dbg.value) before a call that would have
qualified the block to be an error block, to not be an error block.
The obvious goal was to just skip ignored intrinsics, not changing the
meaning of what an error block is.
llvm-svn: 312020
ZoneAlgo used to bail out for the complete SCoP if it encountered
something violating its assumption. This meant the neither OpTree can
forward any load nor DeLICM do anything in such cases, even if their
transformations are unrelated to the violations.
This patch adds a list of compatible elements (currently with the
granularity of entire arrays) that can be used for analysis. OpTree
and DeLICM can then check whether their transformations only concern
compatible elements, and skip non-compatible ones.
This will be useful for e.g. Polybench's benchmarks covariance,
correlation, bicg, doitgen, durbin, gramschmidt, adi that have
assumption violation, but which are not necessarily relevant
for all transformations.
Differential Revision: https://reviews.llvm.org/D37219
llvm-svn: 311929
Add statistics about
- Which optimizations are applied
- Number of loops in Scops at various stages
- Number of scalar/singleton writes at various stages representative
for scalar false dependencies
- Number of parallel loops
These will be useful to find regressions due to moving Polly further
down of LLVM's pass pipeline.
Differential Revision: https://reviews.llvm.org/D37049
llvm-svn: 311553
The implementation of computeArrayUnused did not consider writes without
reads before, except for the first write in the SCoP. This caused it to
'forget' writes directly following another write.
This patch re-adds the entire reaching defintion of a write that has not
been covered before by a read.
This fixes Polybench 4.2 2mm where only one of the matrix-multiplication
was detected.
llvm-svn: 311403
We add a ScopInliner pass which inlines functions based on a simple heuristic:
Let `g` call `f`.
If we can model all of `f` as a Scop, we inline `f` into `g`.
This requires `-polly-detect-full-function` to be enabled. So, the pass
asserts that `-polly-detect-full-function` is enabled.
Differential Revision: https://reviews.llvm.org/D36832
llvm-svn: 311126
Summary:
This pass detangles induction variables from functions, which take variables by
reference. Most fortran functions compiled with gfortran pass variables by
reference. Unfortunately a common pattern, printf calls of induction variables,
prevent in this situation the promotion of the induction variable to a register,
which again inhibits any kind of loop analysis. To work around this issue
we developed a specialized pass which introduces separate alloca slots for
known-read-only references, which indicate the mem2reg pass that the induction
variables can be promoted to registers and consquently enable SCEV to work.
We currently hardcode the information that a function
_gfortran_transfer_integer_write does not read its second parameter, as
dragonegg does not add the right annotations and we cannot change old dragonegg
releases. Hopefully flang will produce the right annotations.
Reviewers: Meinersbur, bollu, singam-sanjay
Reviewed By: bollu
Subscribers: mgorny, pollydev, llvm-commits
Tags: #polly
Differential Revision: https://reviews.llvm.org/D36800
llvm-svn: 311066
Summary:
I pulled out all functionality into static functions, and use those both
in the legacy passes and in the new ones.
Reviewers: grosser, Meinersbur, bollu
Reviewed By: Meinersbur
Subscribers: llvm-commits, pollydev
Differential Revision: https://reviews.llvm.org/D36578
llvm-svn: 310597
This pass is useful to automatically convert a codebase that uses malloc/free
to use their managed memory counterparts.
Currently, rewrite malloc and free to the `polly_{malloc,free}Managed` variants.
A future patch will teach ManagedMemoryRewrite to rewrite global arrays
as pointers to globally allocated managed memory.
Differential Revision: https://reviews.llvm.org/D36513
llvm-svn: 310471
distributeDomain() and filterKnownValInst() are used in a scop
of ForwardOpTree that limits the number of isl operations.
Therefore some isl functions may return null after any operation.
Remove assertion that assume non-null results and handle
isl_*_foreach returning isl::stat::error.
I hope this fixes the crash of the asop buildbot at ihevc_recon.c.
llvm-svn: 310461
This allows us to get rid of stores that are overwritten within the very same
basic block, without ever being read beforehand. This simplification is
necessary for delicm to run on pb4's correlation.
llvm-svn: 310369
Polly has traditionally always been executed at the beginning of the pass
pipeline as LLVM's inliner and DeLICM passes introduced plenty of scalar
dependences which prevented any kind of useful high-level loop optimizations
later in the pass pipeline. With DeLICM now being available, Polly can also
run optimizations when folded into the pass pipeline. This has the benefit
that Polly should now be more effective on C++ code and as an additional bonus,
no additional early canonicalization phase must be run. As a result, Polly
touches the code only if it applies a transformation. Code that does not
benefit from Polly is not touched and consequently will have the very same
execution time as without Polly enabled. Random performance changes, as could
sometimes be observed with polly-position=early are consequently not possible
any more. If performance is changed, this is due to Polly is choosing to
perform a transformation. If this choice is wrong, it can be fixed directly
in Polly.
http://polly.llvm.org/docs/Architecture.html#polly-in-the-llvm-pass-pipeline
llvm-svn: 310319
This commit implements the initial version of fully-indexed static
expansion.
```
for(int i = 0; i<Ni; i++)
for(int j = 0; j<Ni; j++)
S: B[j] = j;
T: A[i] = B[i]
```
After the pass, we want this :
```
for(int i = 0; i<Ni; i++)
for(int j = 0; j<Ni; j++)
S: B[i][j] = j;
T: A[i] = B[i][i]
```
For now we bail (fail) in the following cases:
- Scalar access
- Multiple writes per SAI
- MayWrite Access
- Expansion that leads to an access to the original array
Furthermore: We still miss checks for escaping references to the array
base pointers. A future commit will add the missing escape-checks to
stay correct in those cases. The expansion is still locked behind a
CLI-Option and should not yet be used.
Patch contributed by: Nicholas Bonfante <bonfante.nicolas@gmail.com>
Reviewers: simbuerg, Meinersbur, bollu
Reviewed By: Meinersbur
Subscribers: mgorny, llvm-commits, pollydev
Differential Revision: https://reviews.llvm.org/D34982
llvm-svn: 310304
This is an addition to the -polly-optree pass that reuses the array
content analysis from DeLICM to find array elements that contain the
same value as the value loaded when the target statement instance
is executed.
The analysis is now enabled by default.
The known content analysis could also be used to rematerialize any
llvm::Value that was written to some array element, but currently
only loads are forwarded.
Differential Revision: https://reviews.llvm.org/D36380
llvm-svn: 310279
The complication of bspatch.cc of the AOSP buildbot currently fails
presumably because the occurance of a MetadataAsValue in an operand.
This kind of value can occur as operands of intrinsics, the typical
example being the debug intrinsics.
Polly currently ignores the debug intrinsics and it is not yet clear
which other intrinic might occur. For such cases, and to unbreak the
AOSP buildbot, treat a MetadataAsValue as a constant because it can be
referenced without modification in generated code.
llvm-svn: 309992
With this patch, we get rid of the last use of getStmtFor(BB). Here
this is done by getting the last statement of the incoming block in
case the user is a phi node; otherwise just fetching the statement
comprising the instruction for which the virtual use is being created.
Differential Revision: https://reviews.llvm.org/D36268
llvm-svn: 309947
These passes have been tested over the last month and should generally help
to remove scalar data dependences in Polly. We enable them to give them even
wider test coverage. Large performance regressions and any kind of correctness
regressions are not expected.
llvm-svn: 309878
Summary:
This patch is a first attempt at registering Polly passes with the LLVM tools. Tool plugins are still unsupported, but this registration is usable from the tools if Polly is linked into them (albeit requiring minimal patches to those tools). Registration requires a small amount of machinery (the owning analysis proxies), necessary for injecting ScopAnalysisManager objects into the calling tools.
This patch is marked WIP because the registration is incomplete. Parsing manual pipelines is fully supported, but default pass injection into the O3 pipeline is lacking, mostly because there is opportunity for some redesign here, I believe. The first point of order would be insertion points. I think it makes sense to run before the vectorizers. Running Polly Early, however, is weird. Mostly because it actually is the default (which to me is unexpected), and because Polly runs it's own O1 pipeline. Why not instead insert it at an appropriate place somewhere after simplification happend? Running after the loop optimizers seems intuitive, but it also seems wasteful, since multiple consecutive loops might well be a single scop, and we don't need to run for all of them.
My second request for comments would be regarding all those smallish helper passes we have, like PollyViewer, PollyPrinter, PollyImportJScop. Right now these are controlled by command line options, deciding whether they should be part of the Polly pipeline. What is your opinion on treating them like real passes, and have the user write an appropriate pipeline if they want to use any of them?
Reviewers: grosser, Meinersbur, bollu
Reviewed By: grosser
Subscribers: llvm-commits, pollydev
Tags: #polly
Differential Revision: https://reviews.llvm.org/D35458
llvm-svn: 309826
ScopBuilder and Simplify (through VirtualInstruction.cpp) previously
used this functionality in their own implementation. Refactor them
both into a common one into the Scop class.
BlockGenerator also makes use of a similiar functionality, but also
records outside users and takes place after region simplification.
Merging it as well would be more complicated.
llvm-svn: 309273
After region exit simplification, the incoming block of a phi node in
the SCoP region's exit block lands outside of the region. Since we
treat SCoPs as if this already happened, we need to account for that
when looking for outside uses of scalars (i.e. escaping scalars).
llvm-svn: 309271
A PHI node's incoming block is the user of its operand, not the PHI's parent.
Assuming the PHINode's parent being the user lead to the removal of a
MemoryAccesses because its use was assumed to be inside of the SCoP.
llvm-svn: 309164
In the following loop:
int i;
for (i = 0; i < func(); i+=1)
;
SCoP:
for (int j = 0; j<n; j+=1)
S(i, j)
The value i is synthesizable in the SCoP that includes only the j-loop.
This is because i is fixed within the SCoP, it is irrelevant whether
it originates from another loop.
This fixes a strange case where a PHI was synthesiable in a SCoP,
but not its incoming value, triggering an assertion.
This should fix MultiSource/Applications/sgefa/sgefa of the
perf-x86_64-penryn-O3-polly-before-vectorizer-unprofitable buildbot.
llvm-svn: 309109