target-specific shuffl DAG combines.
We were recognizing the paired shuffles backwards. This code needs to be
replaced anyways as we have the same functionality elsewhere, but I'll
do the refactoring in a follow-up, this is the minimal fix to the
behavior.
In addition to fixing miscompiles with the new vector shuffle lowering,
it also causes the canonicalization to kick in much better, selecting
the smaller encoding variants in lots of places in the new AVX path.
This still isn't quite ideal as we don't need both the shufpd and the
punpck instructions, but that'll get fixed in a follow-up patch.
llvm-svn: 215690
fuzz testing.
The function which tested for adjacency did what it said on the tin, but
when I called it, I wanted it to do something more thorough: I wanted to
know if the *pairs* of shuffle elements were adjacent and started at
0 mod 2. In one place I had the decency to try to test for this, but in
the other it was completely skipped, miscompiling this test case. Fix
this by making the helper actually do what I wanted it to do everywhere
I called it (and removing the now redundant code in one place).
I *really* dislike the name "canWidenShuffleElements" for this
predicate. If anyone can come up with a better name, please let me know.
The other name I thought about was "canWidenShuffleMask" but is it
really widening the mask to reduce the number of lanes shuffled? I don't
know. Naming things is hard.
llvm-svn: 215089
lowering.
For maximum irony, I had already discovered this bug, diagnosed it, and
left FIXMEs about it in the test cases. =[ I just failed to go back over
those until after i had reduced a bootstrap miscompile down to a single
TU, stared at the assembly for an hour, and figured out the bug. Again.
Oh well.
llvm-svn: 211955
x86 backend.
This sketches out a new code path for vector lowering, hidden behind an
off-by-default flag while it is under development. The fundamental idea
behind the new code path is to aggressively break down the problem space
in ways that ease selecting the odd set of instructions available on
x86, and carefully avoid scalarizing code even when forced to use older
ISAs. Notably, this starts off restricting itself to SSE2 and implements
the complete vector shuffle and blend space for 128-bit vectors in SSE2
without scalarizing. The plan is to layer on top of this ISA extensions
where we can bail out of the complex SSE2 lowering and opt for
a cheaper, specialized instruction (or set of instructions). It also
needs to be generalized to AVX and AVX512 vector widths.
Currently, this does a decent but not perfect job for SSE2. There are
some specific shortcomings that I plan to address:
- We need a peephole combine to fold together shuffles where possible.
There are cases where a previous shuffle could be modified slightly to
arrange for elements to be in the correct position and a later shuffle
eliminated. Doing this eagerly added quite a bit of complexity, and
so my plan is to combine away these redundancies afterward.
- There are a lot more clever ways to use unpck and pack that need to be
added. This is essential for real world shuffles as it turns out...
Once SSE2 is polished a bit I should be able to get interesting numbers
on performance improvements on benchmarks conducive to vectorization.
All of this will be off by default until it is functionally equivalent
of course.
Differential Revision: http://reviews.llvm.org/D4225
llvm-svn: 211888