Incremental improvement to fast-isel for PPC64. This allows us to
select on ret, sext, and zext. Filling in sext/zext improves some of
the existing logic in handling compare-immediates that needed extends.
A simplified return convention for fast-isel is also added to the
PPC64 calling conventions. All call/return processing for DAG
selection is handled with custom code, so there isn't an existing CC
to rely on here. The include of PPCGenCallingConv.inc causes compiler
warnings due to the 32-bit calling conventions that are not used, so
the dummy function "usePPC32CCs()" is added here to silence those.
Test cases for the return and extend logic are added.
llvm-svn: 189266
First chunk of actual fast-isel selection code. This handles direct
and indirect branches, as well as feeding compares for direct
branches. PPCFastISel::PPCEmitIntExt() is just roughed in and will be
expanded in a future patch. This also corrects a problem with
selection for constant pool entries in JIT mode or with small code
model.
llvm-svn: 189202
(Patch committed on behalf of Mark Minich, whose log entry follows.)
This is a continuation of the refactorings performed in svn rev 188573
(see that rev's comments for more detail).
This is my stage 2 refactoring: I combined the emitPrologue() &
emitEpilogue() PPC32 & PPC64 code into a single flow, simplifying a
lot of the code since in essence the PPC32 & PPC64 code generation
logic is the same, only the instruction forms are different (in most
cases). This simplification is necessary because my functional changes
(yet to come) add significant complexity, and without the
simplification of my stage 2 refactoring, the overall complexity of
both emitPrologue() & emitEpilogue() would have become almost
intractable for most mortal programmers (like me).
This submission was intended to be a pure refactoring (no functional
changes whatsoever). However, in the process of combining the PPC32 &
PPC64 flows, I spotted a difference that I believe is a bug (see svn
rev 186478 line 863, or svn rev 188573 line 888): This line appears to
be restoring the BP with the original FP content, not the original BP
content. When I merged the 32-bit and 64-bit code, I used the
corresponding code from the 64-bit flow, which I believe uses the
correct offset (BPOffset) for this operation.
llvm-svn: 188741
This adds a llvm.copysign intrinsic; We already have Libfunc recognition for
copysign (which is turned into the FCOPYSIGN SDAG node). In order to
autovectorize calls to copysign in the loop vectorizer, we need a corresponding
intrinsic as well.
In addition to the expected changes to the language reference, the loop
vectorizer, BasicTTI, and the SDAG builder (the intrinsic is transformed into
an FCOPYSIGN node, just like the function call), this also adds FCOPYSIGN to a
few lists in LegalizeVector{Ops,Types} so that vector copysigns can be
expanded.
In TargetLoweringBase::initActions, I've made the default action for FCOPYSIGN
be Expand for vector types. This seems correct for all in-tree targets, and I
think is the right thing to do because, previously, there was no way to generate
vector-values FCOPYSIGN nodes (and most targets don't specify an action for
vector-typed FCOPYSIGN).
llvm-svn: 188728
copysign/copysignf never become function calls (because the SDAG expansion code
does not lower to the corresponding function call, but rather directly
implements the associated logic), but copysignl almost always is lowered into a
call to the requested libm functon (and, thus, might clobber CTR).
llvm-svn: 188727
Modern PPC cores support a floating-point copysign instruction, and we can use
this to lower the FCOPYSIGN node (which is created from calls to the libm
copysign function). A couple of extra patterns are necessary because the
operand types of FCOPYSIGN need not agree.
llvm-svn: 188653
safe on PPC32 SVR4 ABI
[Patch and following text by Mark Minich; committing on his behalf.]
There are FIXME's in PowerPC/PPCFrameLowering.cpp, method
PPCFrameLowering::emitPrologue() related to "negative offsets of R1"
on PPC32 SVR4. They're true, but the real issue is that on PPC32 SVR4
(and any ABI without a Red Zone), no spills may be made until after
the stackframe is claimed, which also includes the LR spill which is
at a positive offset. The same problem exists in emitEpilogue(),
though there's no FIXME for it. I intend to fix this issue, making
LLVM-compiled code finally safe for use on SVR4/EABI/e500 32-bit
platforms (including in particular, OS-free embedded systems & kernel
code, where interrupts may share the same stack as user code).
In preparation for making these changes, to make the diffs for the
functional changes less cluttered, I am providing the non-functional
refactorings in two stages:
Stage 1 does some minor fluffy refactorings to pull multiple method
calls up into a single bool, creating named bools for repeated uses of
obscure logic, moving some code up earlier because either stage 2 or
my final version will require it earlier, and rewording/adding some
comments. My stage 1 changes can be characterized as primarily fluffy
cleanup, the purpose of which may be unclear until the stage 2 or
final changes are made.
My stage 2 refactorings combine the separate PPC32 & PPC64 logic,
which is currently performed by largely duplicate code, into a single
flow, with the differences handled by a group of constants initialized
early in the methods.
This submission is for my stage 1 changes. There should be no
functional changes whatsoever; this is a pure refactoring.
llvm-svn: 188573
This is a follow-up to r187693, correcting that code to request the correct
register class. The previous version, with the wrong register class, was not
really correcting the constraints, but rather was removing them. Coincidentally,
this fixed the failing test case in r187693, but obviously created other
problems.
llvm-svn: 188407
this records relocation entries in the mach-o object file
for PIC code generation.
tested on powerpc-darwin8, validated against darwin otool -rvV
llvm-svn: 188004
Making use of the recently-added ISD::FROUND, which allows for custom lowering
of round(), the PPC backend will now map frin to round(). Previously, we had
been using frin to lower nearbyint() (and rint() via some custom lowering to
handle the extra fenv flags requirements), but only in fast-math mode because
frin does not tie-to-even. Several users had complained about this behavior,
and this new mapping of frin to round is certainly more appropriate (and does
not require fast-math mode).
In effect, this reverts r178362 (and part of r178337, replacing the nearbyint
mapping with the round mapping).
llvm-svn: 187960
All libm floating-point rounding functions, except for round(), had their own
ISD nodes. Recent PowerPC cores have an instruction for round(), and so here I'm
adding ISD::FROUND so that round() can be custom lowered as well.
For the most part, this is straightforward. I've added an intrinsic
and a matching ISD node just like those for nearbyint() and friends. The
SelectionDAG pattern I've named frnd (because ISD::FP_ROUND has already claimed
fround).
This will be used by the PowerPC backend in a follow-up commit.
llvm-svn: 187926
The PPC backend had been missing a pattern to generate mulli for 64-bit
multiples. We had been generating it only for 32-bit multiplies. Unfortunately,
generating li + mulld unnecessarily increases register pressure.
llvm-svn: 187807
Without explicit dependencies, both per-file action and in-CommonTableGen action could run in parallel.
It races to emit *.inc files simultaneously.
llvm-svn: 187780
Internally, the PowerPC backend names the 32-bit GPRs R[0-9]+, and names the
64-bit parent GPRs X[0-9]+. When matching inline assembly constraints with
explicit register names, on PPC64 when an i64 MVT has been requested, we need
to follow gcc's convention of using r[0-9]+ to refer to the 64-bit (parent)
registers.
At some point, we'll probably want to arrange things so that the generic code
in TargetLowering uses the AsmName fields declared in *RegisterInfo.td in order
to match these inline asm register constraints. If we do that, this change can
be reverted.
llvm-svn: 187693
Function attributes are the future! So just query whether we want to realign the
stack directly from the function instead of through a random target options
structure.
llvm-svn: 187618
This is the first of many upcoming patches for PowerPC fast
instruction selection support. This patch implements the minimum
necessary for a functional (but extremely limited) FastISel pass. It
allows the table-generated portions of the selector to be created and
used, but in most cases selection will fall back to the DAG selector.
None of the block terminator instructions are implemented yet, and
most interesting instructions require some special handling.
Therefore there aren't any new test cases with this patch. There will
be quite a few tests coming with future patches.
This patch adds the make/CMake support for the new code (including
tablegen -gen-fast-isel) and creates the FastISel object for PPC64 ELF
only. It instantiates the necessary virtual functions
(TargetSelectInstruction, TargetMaterializeConstant,
TargetMaterializeAlloca, tryToFoldLoadIntoMI, and FastLowerArguments),
but of these, only TargetMaterializeConstant contains any useful
implementation. This is present since the table-generated code
requires the ability to materialize integer constants for some
instructions.
This patch has been tested by building and running the
projects/test-suite code with -O0. All tests passed with the
exception of a couple of long-running tests that time out using -O0
code generation.
llvm-svn: 187399
The tests !defined(__ppc__) && !defined(__powerpc__) are not needed
or helpful when verifying that code is being compiled for a 64-bit
target. The simpler test provided by this revision is sufficient to
tell if the target is 64-bit.
llvm-svn: 187318
Both GCC and LLVM will implicitly define __ppc__ and __powerpc__ for
all PowerPC targets, whether 32- or 64-bit. They will both implicitly
define __ppc64__ and __powerpc64__ for 64-bit PowerPC targets, and not
for 32-bit targets. We cannot be sure that all other possible
compilers used to compile Clang/LLVM define both __ppc__ and
__powerpc__, for example, so it is best to check for both when relying
on either inside the Clang/LLVM code base.
This patch makes sure we always check for both variants. In addition,
it fixes one unnecessary check in lib/Target/PowerPC/PPCJITInfo.cpp.
(At least one of __ppc__ and __powerpc__ should always be defined when
compiling for a PowerPC target, no matter which compiler is used, so
testing for them is unnecessary.)
There are some places in the compiler that check for other variants,
like __POWERPC__ and _POWER, and I have left those in place. There is
no need to add them elsewhere. This seems to be in Apple-specific
code, and I won't take a chance on breaking it.
There is no intended change in behavior; thus, no test cases are
added.
llvm-svn: 187248
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code. Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing. Code generation will otherwise be the same as
powerpc64 (big-endian), for now.
The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.
The LLVM portions of this patch simply add ppc64le coverage everywhere
that ppc64 coverage currently exists. There is nothing of any import
worth testing until such time as little-endian code generation is
implemented. In the corresponding Clang patch, there is a new test
case variant to ensure that correct built-in defines for little-endian
code are generated.
llvm-svn: 187179
This removes the need to store the asm variant in each row of the single table that existed before. Shaves ~16K off the size of X86AsmParser.o.
llvm-svn: 187026
Support for dynamic stack alignments in the PPC backend has been unfinished, in
part because it depends on dynamic stack realignment (which I only just
recently implemented fully). Now we can also support dynamic allocas with
higher than the default target stack alignment (16 bytes).
In order to round-up the requested size to the maximum requested alignment, we
need an additional register to hold the rounded-up size. We're already using one
scavenged register to hold the previous stack-pointer value (which needs to be
stored with the signal-safe stdux update), and so when we have dynamic allocas
and a large alignment, we allocate two emergency spill slots for the scavenger.
llvm-svn: 186562
First, this changes the base-pointer implementation to remove an unnecessary
complication (and one that is incompatible with how builtin SjLj is
implemented): instead of using r31 as the base pointer when it is not needed as
a frame pointer, now the base pointer will always be r30 when needed.
Second, we introduce another pseudo register, BP, which is used just like the FP
pseudo register to refer to the base register before we know for certain what
register it will be.
Third, we now save BP into the jmp_buf, and restore r30 from that slot in
longjmp. If the function that called setjmp did not use a base pointer, then
r30 will be overwritten by the setjmp-calling-function's restore code. FP
restoration (which is restored into r31) works the same way.
llvm-svn: 186545
Because the builtin longjmp implementation uses a CTR-based indirect jump, when
the control flow arrives at the builtin setjmp call, the CTR register has
necessarily been clobbered. Correspondingly, this adds CTR to the list of
implicit definitions of the builtin setjmp pseudo instruction.
We don't need to add CTR to the implicit definitions of builtin longjmp
because, even though it does clobber the CTR register, the control flow cannot
return to inside the loop unless there is also a builtin setjmp call.
llvm-svn: 186488
This builds on some frame-lowering code that has existed since 2005 (r24224)
but was disabled in 2008 (r48188) because it needed base pointer support to
function correctly. This implementation follows the strategy suggested by Dale
Johannesen in r48188 where the following comment was added:
This does not currently work, because the delta between old and new stack
pointers is added to offsets that reference incoming parameters after the
prolog is generated, and the code that does that doesn't handle a variable
delta. You don't want to do that anyway; a better approach is to reserve
another register that retains to the incoming stack pointer, and reference
parameters relative to that.
And now we do exactly that. If we don't need a frame pointer, then we use r31
as a base pointer. If we do need a frame pointer, then we use r30 as a base
pointer. The base pointer retains the value of the stack pointer before it was
decremented in the prologue. We then use the base pointer to resolve all
negative frame indicies. The basic scheme follows that for base pointers in the
X86 backend.
We use a base pointer when we need to dynamically realign the incoming stack
pointer. This currently applies only to static objects (dynamic allocas with
large alignments, and base-pointer support in SjLj lowering will come in future
commits).
llvm-svn: 186478
This change mirrors the changes that were made to the X86 and ARM targets to
support subtarget feature changing. As indicated in r182899, the mechanism is
still undergoing revision, and so as with the X86 and ARM targets, there is no
test case yet (there is no effective functionality change).
llvm-svn: 186357
PPCInstrInfo::insertSelect and PPCInstrInfo::canInsertSelect were computing the
common subclass of the true and false inputs, and then selecting either the
32-bit or the 64-bit isel variant based on the result of calling
PPC::GPRCRegClass.hasSubClassEq(RC) and PPC::G8RCRegClass.hasSubClassEq(RC)
(where RC is the common subclass). Unfortunately, this is not quite right: if
we have something like this:
%vreg8<def> = SELECT_CC_I8 %vreg4<kill>, %vreg7<kill>, %vreg6<kill>, 76;
G8RC_and_G8RC_NOX0:%vreg8 CRRC:%vreg4 G8RC_NOX0:%vreg7,%vreg6
then the common subclass of G8RC_and_G8RC_NOX0 and G8RC_NOX0 is G8RC_NOX0, and
G8RC_NOX0 is not a subclass of G8RC (because it also contains the ZERO8
pseudo-register). As a result, we also need to check the common subclass
against GPRC_NOR0 and G8RC_NOX0 explicitly.
This had not been a problem for clients of insertSelect that called
canInsertSelect first (because it had a compensating mistake), but insertSelect
is also used by the PPC pseudo-instruction expander, and this error was causing
a problem in that context.
This problem was found by csmith.
llvm-svn: 186343
We had patterns to match v4i32 immAllZerosV -> V_SET0, but not patterns for
v8i16 (which occurs in the test case) or v16i8. The same was true for
V_SETALLONES (so I added the associated patterns for those as well).
Another bug found by llvm-stress.
llvm-svn: 186108
This fixes a bug (found by csmith) at -O0 where we attempt to create a RLWIMI
with an out-of-range operand. Most uses of the isRunOfOnes function are guarded
by a condition that the value is not zero. This was not true in two places, and
in both places a zero input would result in an out-of-rage MB value (= 32).
To fix this, isRunOfOnes returns false on a zero input (and I've remove one
now-redundant guard).
llvm-svn: 186101
In discussing this change with Bill Schmidt, it was decided that the original
comment about negative FIs was incorrect. We'll still exclude them for now, but
now with a more-accurate explanation.
llvm-svn: 186005
A more complete example of the bug in PR16556 was recently provided,
showing that the previous fix was not sufficient. The previous fix is
reverted herein.
The real problem is that ReplaceNodeResults() uses LowerFP_TO_INT as
custom lowering for FP_TO_SINT during type legalization, without
checking whether the input type is handled by that routine.
LowerFP_TO_INT requires the input to be f32 or f64, so we fail when
the input is ppcf128.
I'm leaving the test case from the initial fix (r185821) in place, and
adding the new test as another crash-only check.
llvm-svn: 185959
in-tree implementations of TargetLoweringBase::isFMAFasterThanMulAndAdd in
order to resolve the following issues with fmuladd (i.e. optional FMA)
intrinsics:
1. On X86(-64) targets, ISD::FMA nodes are formed when lowering fmuladd
intrinsics even if the subtarget does not support FMA instructions, leading
to laughably bad code generation in some situations.
2. On AArch64 targets, ISD::FMA nodes are formed for operations on fp128,
resulting in a call to a software fp128 FMA implementation.
3. On PowerPC targets, FMAs are not generated from fmuladd intrinsics on types
like v2f32, v8f32, v4f64, etc., even though they promote, split, scalarize,
etc. to types that support hardware FMAs.
The function has also been slightly renamed for consistency and to force a
merge/build conflict for any out-of-tree target implementing it. To resolve,
see comments and fixed in-tree examples.
llvm-svn: 185956
In the commit message to r185476 I wrote:
>The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD
>correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD.
>This causes some confusion with the asm parser, since VK_PPC_TLSGD
>is output as @tlsgd, which is then read back in as VK_TLSGD.
>
>To avoid this confusion, this patch removes the PowerPC-specific
>modifiers and uses the generic modifiers throughout. (The only
>drawback is that the generic modifiers are printed in upper case
>while the usual convention on PowerPC is to use lower-case modifiers.
>But this is just a cosmetic issue.)
This was unfortunately incorrect, there is is fact another,
serious drawback to using the default VK_TLSLD/VK_TLSGD
variant kinds: using these causes ELFObjectWriter::RelocNeedsGOT
to return true, which in turn causes the ELFObjectWriter to emit
an undefined reference to _GLOBAL_OFFSET_TABLE_.
This is a problem on powerpc64, because it uses the TOC instead
of the GOT, and the linker does not provide _GLOBAL_OFFSET_TABLE_,
so the symbol remains undefined. This means shared libraries
using TLS built with the integrated assembler are currently
broken.
While the whole RelocNeedsGOT / _GLOBAL_OFFSET_TABLE_ situation
probably ought to be properly fixed at some point, for now I'm
simply reverting the r185476 commit. Now this in turn exposes
the breakage of handling @tlsgd/@tlsld in the asm parser that
this check-in was originally intended to fix.
To avoid this regression, I'm also adding a different fix for
this problem: while common code now parses @tlsgd as VK_TLSGD,
a special hack in the asm parser translates this code to the
platform-specific VK_PPC_TLSGD that the back-end now expects.
While this is not really pretty, it's self-contained and
shouldn't hurt anything else for now. One the underlying
problem is fixed, this hack can be reverted again.
llvm-svn: 185945
The PowerPC assembler is supposed to provide a directive .machine
that allows switching the supported CPU instruction set on the fly.
Since we do not yet check CPU feature sets at all and always accept
any available instruction, this is not really useful at this point.
However, it makes sense to accept (and ignore) ".machine any" to
avoid spuriously rejecting existing assembler files that use this.
llvm-svn: 185924
This adds support for the .llong PowerPC-specifc assembler directive.
In doing so, I notices that .word is currently incorrect: it is
supposed to define a 2-byte data element, not a 4-byte one.
llvm-svn: 185911
This fixes another bug found by llvm-stress!
If we happen to be doing an i64 load or store into a stack slot that has less
than a 4-byte alignment, then the frame-index elimination may need to use an
indexed load or store instruction (because the offset may not be a multiple of
4, a requirement of the STD/LD instructions). The extra register needed to hold
the offset comes from the register scavenger, and it is possible that the
scavenger will need to use an emergency spill slot. As a result, we need to
make sure that a spill slot is allocated when doing an i64 load/store into a
less-than-4-byte-aligned stack slot.
Because test cases for things like this tend to be fairly fragile, I've
concatenated a few small bugpoint-reduced test cases together to form the
regression test.
llvm-svn: 185907
A setting in MCAsmInfo defines the "assembler dialect" to use. This is used
by common code to choose between alternatives in a multi-alternative GNU
inline asm statement like the following:
__asm__ ("{sfe|subfe} %0,%1,%2" : "=r" (out) : "r" (in1), "r" (in2));
The meaning of these dialects is platform specific, and GCC defines those
for PowerPC to use dialect 0 for old-style (POWER) mnemonics and 1 for
new-style (PowerPC) mnemonics, like in the example above.
To be compatible with inline asm used with GCC, LLVM ought to do the same.
Specifically, this means we should always use assembler dialect 1 since
old-style mnemonics really aren't supported on any current platform.
However, the current LLVM back-end uses:
AssemblerDialect = 1; // New-Style mnemonics.
in PPCMCAsmInfoDarwin, and
AssemblerDialect = 0; // Old-Style mnemonics.
in PPCLinuxMCAsmInfo.
The Linux setting really isn't correct, we should be using new-style
mnemonics everywhere. This is changed by this commit.
Unfortunately, the setting of this variable is overloaded in the back-end
to decide whether or not we are on a Darwin target. This is done in
PPCInstPrinter (the "SyntaxVariant" is initialized from the MCAsmInfo
AssemblerDialect setting), and also in PPCMCExpr. Setting AssemblerDialect
to 1 for both Darwin and Linux no longer allows us to make this distinction.
Instead, this patch uses the MCSubtargetInfo passed to createPPCMCInstPrinter
to distinguish Darwin targets, and ignores the SyntaxVariant parameter.
As to PPCMCExpr, this patch adds an explicit isDarwin argument that needs
to be passed in by the caller when creating a target MCExpr. (To do so
this patch implicitly also reverts commit 184441.)
llvm-svn: 185858
Another bug found by llvm-stress! This fixes hitting
llvm_unreachable("Invalid integer vector compare condition");
at the end of getVCmpInst in PPCISelDAGToDAG.
llvm-svn: 185855
This adds support for the old-style time base instructions;
while new programs are supposed to use mfspr, the mftb instructions
are still supported and in use by existing assembler files.
llvm-svn: 185829
This adds support for the basic mnemoics (with the L operand) for the
fixed-point compare instructions. These are defined as aliases for the
already existing CMPW/CMPD patterns, depending on the value of L.
This requires use of InstAlias patterns with immediate literal operands.
To make this work, we need two further changes:
- define a RegisterPrefix, because otherwise literals 0 and 1 would
be parsed as literal register names
- provide a PPCAsmParser::validateTargetOperandClass routine to
recognize immediate literals (like ARM does)
llvm-svn: 185826
PPCTargetLowering::LowerFP_TO_INT() expects its source operand to be
either an f32 or f64, but this is not checked. A long double
(ppcf128) operand will normally be custom-lowered to a conversion to
f64 in this context. However, this isn't the case for an UNDEF node.
This patch recognizes a ppcf128 as a legal source operand for
FP_TO_INT only if it's an undef, in which case it creates an undef of
the target type.
At some point we might want to do a wholesale custom lowering of
ISD::UNDEF when the type is ppcf128, but it's not really clear that's
a great idea, and probably more work than it's worth for a situation
that only arises in the case of a programming error. At this point I
think simple is best.
The test case comes from PR16556, and is a crash-test only.
llvm-svn: 185821
When a target@got@tprel or target@got@tprel@l symbol variant is used in
a fixup_ppc_half16 (*not* fixup_ppc_half16ds) context, we currently fail,
since the corresponding R_PPC64_GOT_TPREL16 / R_PPC64_GOT_TPREL16_LO
relocation types do not exist.
However, since such symbol variants resolve to GOT offsets which are
always 4-aligned, we can simply instead use the _DS variants of the
relocation types, which *do* exist.
The same applies for the @got@dtprel variants.
llvm-svn: 185700
This adds support for the last missing construct to parse TLS-related
assembler code:
add 3, 4, symbol@tls
The ADD8TLS currently hard-codes the @tls into the assembler string.
This cannot be handled by the asm parser, since @tls is parsed as
a symbol variant. This patch changes ADD8TLS to have the @tls suffix
printed as symbol variant on output too, which allows us to remove
the isCodeGenOnly marker from ADD8TLS. This in turn means that we
can add a AsmOperand to accept @tls marked symbols on input.
As a side effect, this means that the fixup_ppc_tlsreg fixup type
is no longer necessary and can be merged into fixup_ppc_nofixup.
llvm-svn: 185692
This implements a proper PPCAsmBackend::writeNopData routine
that actually writes PowerPC nop instructions.
This fixes the last remaining difference in object file output
(text section) between the integrated assembler and GNU as
that I've seen anywhere.
llvm-svn: 185662
This adds support for specifying condition registers and
condition register fields via expressions using the symbols
defined by the PowerISA, like "4*cr2+eq".
llvm-svn: 185633
Just as with mfocrf, it is also preferable to use mtocrf instead of
mtcrf when only a single CR register is to be written.
Current code however always emits mtcrf. This probably does not matter
when using an external assembler, since the GNU assembler will in fact
automatically replace mtcrf with mtocrf when possible. It does create
inefficient code with the integrated assembler, however.
To fix this, this patch adds MTOCRF/MTOCRF8 instruction patterns and
uses those instead of MTCRF/MTCRF8 everything. Just as done in the
MFOCRF patch committed as 185556, these patterns will be converted
back to MTCRF if MTOCRF is not available on the machine.
As a side effect, this allows to modify the MTCRF pattern to accept
the full range of mask operands for the benefit of the asm parser.
llvm-svn: 185561
When accessing just a single CR register, it is always preferable to
use mfocrf instead of mfcr, if the former is available on the CPU.
Current code makes that distinction in many, but not all places
where a single CR register value is retrieved. One missing
location is PPCRegisterInfo::lowerCRSpilling.
To fix this and make this simpler in the future, this patch changes
the bulk of the back-end to always assume mfocrf is available and
simply generate it when needed.
On machines that actually do not support mfocrf, the instruction
is replaced by mfcr at the very end, in EmitInstruction.
This has the additional benefit that we no longer need the
MFCRpseud hack, since before EmitInstruction we always have
a MFOCRF instruction pattern, which already models data flow
as required.
The patch also adds the MFOCRF8 version of the instruction,
which was missing so far.
Except for the PPCRegisterInfo::lowerCRSpilling case, no change
in generated code intended.
llvm-svn: 185556
The subroutine getCRIdxForSetCC has a parameter "Other" and comment:
If this returns with Other != -1, then the returned comparison
is an or of two simpler comparisons.
However for at least the last five years this routine has never
returned a value of Other != -1; these cases are now handled
differently to begin with.
This patch removes the parameter and the code in SelectSETCC that
attempted to handle the Other != -1 case.
llvm-svn: 185541
A couple of AltiVec patterns are just specialized forms of the
generic instruction pattern, and should therefore be marked
isCodeGenOnly to avoid confusing the asm parser:
VCFSX_0, VCTUXS_0, VCFUX_0, VCTSXS_0, and V_SETALLONES.
Noticed by inspection of the generated PPCGenAsmMatcher.inc.
llvm-svn: 185533
This adds support for the generic forms of mtspr/mfspr
for the asm parser. The compiler will continue to use
the specialized patters for mtlr etc. since those are
needed to correctly describe data flow.
llvm-svn: 185532
This patch now adds support for recognizing TLS call sequences in
the asm parser. This needs a new pattern BL8_TLS, which is like
BL8_NOP_TLS except without nop. That pattern is used for the
asm parser only.
llvm-svn: 185478
As part of the global-dynamic and local-dynamic TLS sequences, we need
to use a special form of the call instruction:
bl __tls_get_addr(sym@tlsld)
bl __tls_get_addr(sym@tlsgd)
which generates two fixups. The current implementation of this causes
problems with recognizing this form in the asm parser. To fix this,
this patch reworks operand processing for this special form by using
a single operand to hold both __tls_get_addr and sym@tlsld and defining
a print method to output the above form, and an encoding method to
generate the two fixups.
As a side simplification, the patch replaces the two instruction
patterns BL8_NOP_TLSGD and BL8_NOP_TLSLD by a single BL8_NOP_TLS,
since the patterns already operate in an identical fashion (whether
we have a local-dynamic or global-dynamic symbol is already encoded
in the symbol modifier).
No change in code generation intended.
llvm-svn: 185477
The PowerPC-specific modifiers VK_PPC_TLSGD and VK_PPC_TLSLD
correspond exactly to the generic modifiers VK_TLSGD and VK_TLSLD.
This causes some confusion with the asm parser, since VK_PPC_TLSGD
is output as @tlsgd, which is then read back in as VK_TLSGD.
To avoid this confusion, this patch removes the PowerPC-specific
modifiers and uses the generic modifiers throughout. (The only
drawback is that the generic modifiers are printed in upper case
while the usual convention on PowerPC is to use lower-case modifiers.
But this is just a cosmetic issue.)
llvm-svn: 185476
This adds an implementation of getDebugThreadLocalSymbol for
(64-bit) PowerPC. This needs to return a generic MCExpr
since on ppc64, we need to add a bias of 0x8000 to the
value returned by the R_PPC64_DTPREL64 relocation.
llvm-svn: 185461
This is dead code since PIC16 was removed in 2010. The result was an odd mix,
where some parts would carefully pass it along and others would assert it was
zero (most of the object streamer for example).
llvm-svn: 185436
There are a couple of (small) related changes here:
1. The printed name of the VRSAVE register has been changed from VRsave to
vrsave in order to match the name accepted by GNU binutils.
2. Support for parsing vrsave has been added to the asm parser (it seems that
there was no test case specifically covering this code, so I've added one).
3. The list of Altivec registers, which was common to all calling conventions,
has been separated out. This allows us to define the base CSR lists, and then
lists for each ABI with Altivec included. This allows SjLj, for example, to
work correctly on non-Altivec targets without using unnatural definitions of
the NoRegs CSR list.
4. VRSAVE is now always reserved on non-Darwin targets and all Altivec
registers are reserved when Altivec is disabled.
With these changes, it is now possible to compile a function containing
__builtin_unwind_init() on Linux/PPC64 with debugging information. This did not
work previously because GNU binutils assumes that all .cfi_offset offsets will
be 8-byte aligned on PPC64 (and errors out if you provide a non-8-byte-aligned
offset). This is not true for the vrsave register, however, because this
register is used only on Darwin, GCC does not bother printing a .cfi_offset
entry for it (even though there is a slot in the stack frame for it as
specified by the ABI). This change allows us to do the same: we will also not
print .cfi_offset directives for vrsave.
llvm-svn: 185409
This adds support for TLS data relocations and modifiers:
.quad target@dtpmod
.quad target@tprel
.quad target@dtprel
Currently exploited by the asm parser only.
llvm-svn: 185394
Although you can't generate this from C on PPC64, if you have a loop using a
64-bit counter on PPC32 then you can't form a CTR-based loop for it. This had
been cauing the PPCCTRLoops pass to assert.
Thanks to Joerg Sonnenberger for providing a test case!
llvm-svn: 185361
A @got reference must always result in a relocation, so that
the linker has a chance to set up the GOT entry, even if the
symbol happens to be local.
Add a PPCELFObjectWriter::ExplicitRelSym routine that enforces
a relocation to be emitted for GOT references.
llvm-svn: 185353
This fixes PR16418, which reports that a function calling
__builtin_unwind_init() asserts. The cause is that this generates a
spill/restore for VRSAVE, and we support that only on Darwin (because VRSAVE is
only really used on Darwin).
The test case checks only that we don't crash. We can add correctness checks
once someone verifies what behavior the function is supposed to have.
llvm-svn: 185235
Under certain (evidently rare) circumstances, this code used to convert OR(a,
AND(x, y)) into OR(a, x). This was incorrect.
While there, I've added a comment to the code immediately above.
llvm-svn: 185201
The assembler currently strictly verifies that immediates for
s16imm operands are in range (-32768 ... 32767). This matches
the behaviour of the GNU assembler, with one exception: gas
allows, as a special case, operands in an extended range
(-65536 .. 65535) for the addis instruction only (and its
extended mnemonic lis).
The main reason for this seems to be to allow using unsigned
16-bit operands for lis, e.g. like lis %r1, 0xfedc.
Since this has been supported by gas for a long time, and
assembler source code seen "in the wild" actually exploits
this feature, this patch adds equivalent support to LLVM
for compatibility reasons.
llvm-svn: 184946
Currently, all instructions taking s16imm operands support symbolic
operands. However, for u16imm operands, we only support actual
immediate integers. This causes the assembler to reject code like
ori %r5, %r5, symbol@l
This patch changes the u16imm operand definition to likewise
accept symbolic operands. In fact, s16imm and u16imm can
share the same encoding routine, now renamed to getImm16Encoding.
llvm-svn: 184944
This adds pattern for the rldcr and rldic instructions (the last instruction
from the rotate/shift family that were missing). They are currently used
only by the asm parser.
llvm-svn: 184833
This adds support for the predicted forms of branches (+/-).
There are three cases to consider:
- Branches using a PPC::Predicate code
For these, I've added new PPC::Predicate codes corresponding
to the BO values for predicted branch forms, and updated insn
printing to print them correctly. I've also added new aliases
for the asm parser matching the new forms.
- bt/bf
I've added new aliases matching to gBC etc.
- bd(n)z variants
I've added new instruction patterns for the predicted forms.
In all cases, the new patterns are used for the asm parser only.
(The new infrastructure ought to be sufficient to allow use by
the compiler too at some point.)
llvm-svn: 184754
This adds instruction patterns to cover the generic forms of
the conditional branch instructions. This allows the assembler
to support the generic mnemonics.
The compiler will still generate the various specific forms
of the instruction that were already supported.
llvm-svn: 184722
There is currently only limited support for the "absolute" variants
of branch instructions. This patch adds support for the absolute
variants of all branches that are currently otherwise supported.
This requires adding new fixup types so that the correct variant
of relocation type can be selected by the object writer.
While the compiler will continue to usually choose the relative
branch variants, this will allow the asm parser to fully support
the absolute branches, with either immediate (numerical) or
symbolic target addresses.
No change in code generation intended.
llvm-svn: 184721
The GNU assembler supports (as extension to the ABI) use of PC-relative
relocations in half16 fields, which allows writing code like:
li 1, base-.
This patch adds support for those relocation types in the assembler.
llvm-svn: 184552
The current code base only supports the minimum set of tls-related
relocations and @modifiers that are necessary to support compiler-
generated code. This patch extends this to the full set defined
in the ABI (and supported by the GNU assembler) for the benefit
of the assembler parser.
llvm-svn: 184551
This adds necessary infrastructure to support the @h modifier.
Note that all required relocation types were already present
(and unused).
This patch provides support for using @h in the assembler;
it would also be possible to now use this feature in code
generated by the compiler, but this is not done yet.
llvm-svn: 184548
This renames more VK_PPC_ enums, to make them more closely reflect
the @modifier string they represent. This also prepares for adding
a bunch of new VK_PPC_ enums in upcoming patches.
For consistency, some MO_ flags related to VK_PPC_ enums are
likewise renamed.
No change in behaviour.
llvm-svn: 184547
This is another minor cleanup; to bring enum names in line
with the corresponding @modifier names, this renames:
VK_PPC_TOC -> VK_PPC_TOCBASE
VK_PPC_TOC_ENTRY -> VK_PPC_TOC16
No code change intended.
llvm-svn: 184491
This just re-sorts the big switch statement in
PPCELFObjectWriter::getRelocTypeInner to follow
the (numerical) order of the reloc types, and
fixes a couple of whitespace issues.
llvm-svn: 184485
This patch adds support for having the assembler optimize fixups
to constructs like "symbol@ha" or "symbol@l" if "symbol" can be
resolved at assembler time.
This optimization is already present in the PPCMCExpr.cpp code
for handling PPC_HA16/PPC_LO16 target expressions. However,
those target expression were used only on Darwin targets.
This patch changes target expression code so that they are
usable also with the GNU assembler (using the @ha / @l syntax
instead of the ha16() / lo16() syntax), and changes the
MCInst lowering code to generate those target expressions
where appropriate.
It also changes the asm parser to generate HA16/LO16 target
expressions when parsing assembler source that uses the
@ha / @l modifiers. The effect is that now the above-
mentioned optimization automatically becomes available
for those situations too.
llvm-svn: 184436
Frame index handling is now target-agnostic, so delete the target hooks
for creation & asm printing of target-specific addressing in DBG_VALUEs
and any related functions.
llvm-svn: 184067
I'm taking David Blaikie's suggestion to use an
Optional<PPC::Predicate> return value instead. That's the right
solution for this problem. Thanks for pointing out that possibility!
llvm-svn: 183858
This is a preparatory patch for fast-isel support. The instruction
selector will need to access some functions in PPCGenCallingConv.inc,
which in turn requires several helper functions to be defined. These
are currently defined near the only use of PCCGenCallingConv.inc,
inside PPCISelLowering.cpp. This patch moves the declaration of the
functions into the associated header file to provide the needed
visibility.
No functional change intended.
llvm-svn: 183844
Allows returning a PPC::Predicate from a function with a no-predicate
value possible. Preparatory patch for fast-isel on PPC64 ELF. No
behavioral change intended.
llvm-svn: 183841
I've been comparing the object file output of LLVM's integrated
assembler against the external assembler on PowerPC, and one
area where differences still remain are in DWARF sections.
In particular, the GNU assembler generates .debug_frame and
.debug_line sections using a code alignment factor of 4, since
all PowerPC instructions have size 4 and must be aligned to a
multiple of 4. However, current MC code hard-codes a code
alignment factor of 1.
This patch changes this by adding a "minimum instruction alignment"
data element to MCAsmInfo and using this as code alignment factor.
This requires passing a MCContext into MCDwarfLineAddr::Encode
and MCDwarfLineAddr::EncodeAdvanceLoc. Note that one caller,
MCDwarfLineAddr::Write, didn't actually have that information
available. However, it turns out that this routine is in fact
never used in the whole code base, so the patch simply removes
it. If it turns out to be needed again at a later time, it
could be re-added with an updated interface.
llvm-svn: 183834
A plain "sc" without argument is supposed to be treated like "sc 0"
by the assembler. This patch adds a corresponding alias.
Problem reported by Joerg Sonnenberger.
llvm-svn: 183687
The extended branch mnemonics are supposed to use an implied CR0
if there is no explicit condition register specified. This patch
adds extra variants of the mnemonics to this effect.
Problem reported by Joerg Sonnenberger.
llvm-svn: 183686
On PPC32, [su]div,rem on i64 types are transformed into runtime library
function calls. As a result, they are not allowed in counter-based loops (the
counter-loops verification pass caught this error; this change fixes PR16169).
llvm-svn: 183581
Fixes PR16146: gdb.base__call-ar-st.exp fails after
pre-RA-sched=source fixes.
Patch by Xiaoyi Guo!
This also fixes an unsupported dbg.value test case. Codegen was
previously incorrect but the test was passing by luck.
llvm-svn: 182885
isConsecutiveLS is a slightly more general form of
SelectionDAG::isConsecutiveLoad. Aside from also handling stores, it also does
not assume equality of the chain operands is necessary. In the case of the PPC
backend, this chain condition is checked in a more general way by the
surrounding code.
Mostly, this part of the refactoring in preparation for supporting optimized
unaligned stores.
llvm-svn: 182723
When expanding unaligned Altivec loads, we use the decremented offset trick to
prevent page faults. Unfortunately, if we have a sequence of consecutive
unaligned loads, this leads to suboptimal code generation because the 'extra'
load from the first unaligned load can be combined with the base load from the
second (but only if the decremented offset trick is not used for the first).
Search up and down the chain, through loads and token factors, looking for
consecutive loads, and if one is found, don't use the offset reduction trick.
These duplicate loads are later combined to yield the desired sequence (in the
future, we might want a more-powerful chain search, but that will require some
changes to allow the combiner routines to access the AA object).
This should complete the initial implementation of the optimized unaligned
Altivec load expansion. There is some refactoring that should be done, but
that will happen when the unaligned store expansion is added.
llvm-svn: 182719
The lvsl permutation control instruction is a function only of the alignment of
the pointer operand (relative to the 16-byte natural alignment of Altivec
vectors). As a result, multiple lvsl intrinsics where the operands differ by a
multiple of 16 can be combined.
llvm-svn: 182708
Altivec only directly supports aligned loads, but the loads have a strange
property: If given an unaligned address, they truncate the address to the next
lower aligned address, and load from there. This property, along with an extra
load and some special-purpose permutation-control instructions that generate
the appropriate permutations from the original unaligned address, allow
efficient lowering of aligned loads. This code uses the trick explained in the
Apple Velocity Engine optimization overview document to prevent the needed
extra load from possibly causing a page fault if the original address happens
to be aligned.
As noted in the FIXMEs, there are several additional optimizations that can be
performed to reduce the cost of these loads even more. These will be
implemented in future commits.
llvm-svn: 182691
Now that there is no longer any distinction between symbolLo
and symbolHi operands in either printing, encoding, or parsing,
the operand types can be removed in favor of simply using
s16imm.
This completes the patch series to decouple lo/hi operand part
processing from the particular instruction whose operand it is.
No change in code generation expected from this patch.
llvm-svn: 182618
When targeting the Darwin assembler, we need to generate markers ha16() and
lo16() to designate the high and low parts of a (symbolic) immediate. This
is necessary not just for plain symbols, but also for certain symbolic
expression, typically along the lines of ha16(A - B). The latter doesn't
work when simply using VariantKind flags on the symbol reference.
This is why the current back-end uses hacks (explicitly called out as such
via multiple FIXMEs) in the symbolLo/symbolHi print methods.
This patch uses target-defined MCExpr codes to represent the Darwin
ha16/lo16 constructs, following along the lines of the equivalent solution
used by the ARM back end to handle their :upper16: / :lower16: markers.
This allows us to get rid of special handling both in the symbolLo/symbolHi
print method and in the common code MCExpr::print routine. Instead, the
ha16 / lo16 markers are printed simply in a custom print routine for the
target MCExpr types. (As a result, the symbolLo/symbolHi print methods
can now replaced by a single printS16ImmOperand routine that also handles
symbolic operands.)
The patch also provides a EvaluateAsRelocatableImpl routine to handle
ha16/lo16 constructs. This is not actually used at the moment by any
in-tree code, but is provided as it makes merging into David Fang's
out-of-tree Mach-O object writer simpler.
Since there is no longer any need to treat VK_PPC_GAS_HA16 and
VK_PPC_DARWIN_HA16 differently, they are merged into a single
VK_PPC_ADDR16_HA (and likewise for the _LO16 types).
llvm-svn: 182616
Using PatLeaf rather than ImmLeaf when defining immediate predicates
prevents simple patterns using those predicates from being recognized
for fast instruction selection. This patch replaces the immSExt16
PatLeaf predicate with two ImmLeaf predicates, imm32SExt16 and
imm64SExt16, allowing a few more patterns to be recognized (ADDI,
ADDIC, MULLI, ADDI8, and ADDIC8). Using the new predicates does not
help for LI, LI8, SUBFIC, and SUBFIC8 because these are rejected for
other reasons, but I see no reason to retain the PatLeaf predicate.
No functional change intended, and thus no test cases yet. This is
preliminary work for enabling fast-isel support for PowerPC. When
that support is ready, we'll be able to test this function.
llvm-svn: 182510
Although I had added some support for the BDZ/BDNZ branches into the selector
(in r158204), I had not correctly adjusted the condition at the top of the
loop. As a result, these branches were still essentially unsupported.
This fixes PR16086. Unfortunately, any test case would be very large (because
it would need to force the loop backedge to exceed the range of the 16-bit
immediate).
llvm-svn: 182385
Now that the preheader insertion logic in LoopSimplify is externally exposed,
use it, and remove the copy-and-pasted version.
No functionality change intended.
llvm-svn: 182300
As the pairing of this instruction form with the bdnz/bdz branches is now
enforced by the verification pass, make it clear from the name that these
are used only for counter-based loops.
No functionality change intended.
llvm-svn: 182296
When asserts are enabled, this adds a verification pass for PPC counter-loop
formation. Unfortunately, without sacrificing code quality, there is no better
way of forming counter-based loops except at the (late) IR level. This means
that we need to recognize, at the IR level, anything which might turn into a
function call (or indirect branch). Because this is currently a finite set of
things, and because SelectionDAG lowering is basic-block local, this can be
done. Nevertheless, it is fragile, and failure results in a miscompile. This
verification pass checks that all (reachable) counter-based branches are
dominated by a loop mtctr instruction, and that no instructions in between
clobber the counter register. If these conditions are not satisfied, then an
ICE will be triggered.
In short, this is to help us sleep better at night.
llvm-svn: 182295
We don't need to reject all inline asm as using the counter register (most does
not). Only those that explicitly clobber the counter register need to prevent
the transformation.
llvm-svn: 182191
This patch implements the equivalent change to r182091/r182092
in the old-style code emitter. Instead of having two separate
16-bit immediate encoding routines depending on the instruction,
this patch introduces a single encoder that checks the machine
operand flags to decide whether the low or high half of a
symbol address is required.
Since now both encoders make no further distinction between
"symbolLo" and "symbolHi", the .td operand can now use a
single getS16ImmEncoding method.
Tested by running the old-style JIT tests on 32-bit Linux.
llvm-svn: 182097
Now that fixup_ppc_ha16 and fixup_ppc_lo16 are being treated exactly
the same everywhere, it no longer makes sense to have two fixup types.
This patch merges them both into a single type fixup_ppc_half16,
and renames fixup_ppc_lo16_ds to fixup_ppc_half16ds for consistency.
(The half16 and half16ds names are taken from the description of
relocation types in the PowerPC ABI.)
No change in code generation expected.
llvm-svn: 182092
The current PowerPC MC back end distinguishes between fixup_ppc_ha16
and fixup_ppc_lo16, which are determined by the instruction the fixup
applies to, and uses this distinction to decide whether a fixup ought
to resolve to the high or the low part of a symbol address.
This isn't quite correct, however. It is valid -if unusual- assembler
to use, e.g.
li 1, symbol@ha
or
lis 1, symbol@l
Whether the high or the low part of the address is used depends solely
on the @ suffix, not on the instruction.
In addition, both
li 1, symbol
and
lis 1, symbol
are valid, assuming the symbol address fits into 16 bits; again, both
will then refer to the actual symbol value (so li will load the value
itself, while lis will load the value shifted by 16).
To fix this, two places need to be adapted. If the fixup cannot be
resolved at assembler time, a relocation needs to be emitted via
PPCELFObjectWriter::getRelocType. This routine already looks at
the VK_ type to determine the relocation. The only problem is that
will reject any _LO modifier in a ha16 fixup and vice versa. This
is simply incorrect; any of those modifiers ought to be accepted
for either fixup type.
If the fixup *can* be resolved at assembler time, adjustFixupValue
currently selects the high bits of the symbol value if the fixup
type is ha16. Again, this is incorrect; see the above example
lis 1, symbol
Now, in theory we'd have to respect a VK_ modifier here. However,
in fact common code never even attempts to resolve symbol references
using any nontrivial VK_ modifier at assembler time; it will always
fall back to emitting a reloc and letting the linker handle it.
If this ever changes, presumably there'd have to be a target callback
to resolve VK_ modifiers. We'd then have to handle @ha etc. there.
llvm-svn: 182091
Some IR-level instructions (such as FP <-> i64 conversions) are not chained
w.r.t. the mtctr intrinsic and yet may become function calls that clobber the
counter register. At the selection-DAG level, these might be reordered with the
mtctr intrinsic causing miscompiles. To avoid this situation, if an existing
preheader has instructions that might use the counter register, create a new
preheader for the mtctr intrinsic. This extra block will be remerged with the
old preheader at the MI level, but will prevent unwanted reordering at the
selection-DAG level.
llvm-svn: 182045
This is the second part of the change to always return "true"
offset values from getPreIndexedAddressParts, tackling the
case of "memrix" type operands.
This is about instructions like LD/STD that only have a 14-bit
field to encode immediate offsets, which are implicitly extended
by two zero bits by the machine, so that in effect we can access
16-bit offsets as long as they are a multiple of 4.
The PowerPC back end currently handles such instructions by
carrying the 14-bit value (as it will get encoded into the
actual machine instructions) in the machine operand fields
for such instructions. This means that those values are
in fact not the true offset, but rather the offset divided
by 4 (and then truncated to an unsigned 14-bit value).
Like in the case fixed in r182012, this makes common code
operations on such offset values not work as expected.
Furthermore, there doesn't really appear to be any strong
reason why we should encode machine operands this way.
This patch therefore changes the encoding of "memrix" type
machine operands to simply contain the "true" offset value
as a signed immediate value, while enforcing the rules that
it must fit in a 16-bit signed value and must also be a
multiple of 4.
This change must be made simultaneously in all places that
access machine operands of this type. However, just about
all those changes make the code simpler; in many cases we
can now just share the same code for memri and memrix
operands.
llvm-svn: 182032
DAGCombiner::CombineToPreIndexedLoadStore calls a target routine to
decompose a memory address into a base/offset pair. It expects the
offset (if constant) to be the true displacement value in order to
perform optional additional optimizations; in particular, to convert
other uses of the original pointer into uses of the new base pointer
after pre-increment.
The PowerPC implementation of getPreIndexedAddressParts, however,
simply calls SelectAddressRegImm, which returns a TargetConstant.
This value is appropriate for encoding into the instruction, but
it is not always usable as true displacement value:
- Its type is always MVT::i32, even on 64-bit, where addresses
ought to be i64 ... this causes the optimization to simply
always fail on 64-bit due to this line in DAGCombiner:
// FIXME: In some cases, we can be smarter about this.
if (Op1.getValueType() != Offset.getValueType()) {
- Its value is truncated to an unsigned 16-bit value if negative.
This causes the above opimization to generate wrong code.
This patch fixes both problems by simply returning the true
displacement value (in its original type). This doesn't
affect any other user of the displacement.
llvm-svn: 182012
The old PPCCTRLoops pass, like the Hexagon pass version from which it was
derived, could only handle some simple loops in canonical form. We cannot
directly adapt the new Hexagon hardware loops pass, however, because the
Hexagon pass contains a fundamental assumption that non-constant-trip-count
loops will contain a guard, and this is not always true (the result being that
incorrect negative counts can be generated). With this commit, we replace the
pass with a late IR-level pass which makes use of SE to calculate the
backedge-taken counts and safely generate the loop-count expressions (including
any necessary max() parts). This IR level pass inserts custom intrinsics that
are lowered into the desired decrement-and-branch instructions.
The most fragile part of this new implementation is that interfering uses of
the counter register must be detected on the IR level (and, on PPC, this also
includes any indirect branches in addition to function calls). Also, to make
all of this work, we need a variant of the mtctr instruction that is marked
as having side effects. Without this, machine-code level CSE, DCE, etc.
illegally transform the resulting code. Hopefully, this can be improved
in the future.
This new pass is smaller than the original (and much smaller than the new
Hexagon hardware loops pass), and can handle many additional cases correctly.
In addition, the preheader-creation code has been copied from LoopSimplify, and
after we decide on where it belongs, this code will be refactored so that it
can be explicitly shared (making this implementation even smaller).
The new test-case files ctrloop-{le,lt,ne}.ll have been adapted from tests for
the new Hexagon pass. There are a few classes of loops that this pass does not
transform (noted by FIXMEs in the files), but these deficiencies can be
addressed within the SE infrastructure (thus helping many other passes as well).
llvm-svn: 181927
We want the order to be deterministic on all platforms. NAKAMURA Takumi
fixed that in r181864. This patch is just two small cleanups:
* Move the function to the cpp file. It is only passed to array_pod_sort.
* Remove the ppc implementation which is now redundant
llvm-svn: 181910
Now that applyFixup understands differently-sized fixups, we can define
fixup_ppc_lo16/fixup_ppc_lo16_ds/fixup_ppc_ha16 to properly be 2-byte
fixups, applied at an offset of 2 relative to the start of the
instruction text.
This has the benefit that if we actually need to generate a real
relocation record, its address will come out correctly automatically,
without having to fiddle with the offset in adjustFixupOffset.
Tested on both 64-bit and 32-bit PowerPC, using external and
integrated assembler.
llvm-svn: 181894
The PPCAsmBackend::applyFixup routine handles the case where a
fixup can be resolved within the same object file. However,
this routine is currently hard-coded to assume the size of
any fixup is always exactly 4 bytes.
This is sort-of correct for fixups on instruction text; even
though it only works because several of what really would be
2-byte fixups are presented as 4-byte fixups instead (requiring
another hack in PPCELFObjectWriter::adjustFixupOffset to clean
it up).
However, this assumption breaks down completely for fixups
on data, which legitimately can be of any size (1, 2, 4, or 8).
This patch makes applyFixup aware of fixups of varying sizes,
introducing a new helper routine getFixupKindNumBytes (along
the lines of what the ARM back end does). Note that in order
to handle fixups of size 8, we also need to fix the return type
of adjustFixupValue to uint64_t to avoid truncation.
Tested on both 64-bit and 32-bit PowerPC, using external and
integrated assembler.
llvm-svn: 181891
The changes to CR spill handling missed a case for 32-bit PowerPC.
The code in PPCFrameLowering::processFunctionBeforeFrameFinalized()
checks whether CR spill has occurred using a flag in the function
info. This flag is only set by storeRegToStackSlot and
loadRegFromStackSlot. spillCalleeSavedRegisters does not call
storeRegToStackSlot, but instead produces MI directly. Thus we don't
see the CR is spilled when assigning frame offsets, and the CR spill
ends up colliding with some other location (generally the FP slot).
This patch sets the flag in spillCalleeSavedRegisters for PPC32 so
that the CR spill is properly detected and gets its own slot in the
stack frame.
llvm-svn: 181800
This fixes warning messages observed in the oggenc application test in
projects/test-suite. Special handling is needed for the 64-bit
PowerPC SVR4 ABI when a constant is initialized with a pointer to a
function in a shared library. Because a function address is
implemented as the address of a function descriptor, the use of copy
relocations can lead to problems with initialization. GNU ld
therefore replaces copy relocations with dynamic relocations to be
resolved by the dynamic linker. This means the constant cannot reside
in the read-only data section, but instead belongs in .data.rel.ro,
which is designed for constants containing dynamic relocations.
The implementation creates a class PPC64LinuxTargetObjectFile
inheriting from TargetLoweringObjectFileELF, which behaves like its
parent except to place constants of this sort into .data.rel.ro.
The test case is reduced from the oggenc application.
llvm-svn: 181723
It was just a less powerful and more confusing version of
MCCFIInstruction. A side effect is that, since MCCFIInstruction uses
dwarf register numbers, calls to getDwarfRegNum are pushed out, which
should allow further simplifications.
I left the MachineModuleInfo::addFrameMove interface unchanged since
this patch was already fairly big.
llvm-svn: 181680
The patch I committed as revision 167864 introduced a regression that
causes LLVM to no longer generate appropriate relocs for @ha/@l symbol
references (but fail an assertion instead).
This is fixed here by re-enabling support for the VK_PPC_GAS_HA16/
VK_PPC_GAS_LO16 variant kinds (and their Darwin variants) in
PPCELFObjectWriter.cpp.
Tested by running projects/test-suite in -m32 mode with the integrated
assembler forced on. A standalone test case will be committed shortly
as well.
llvm-svn: 181450
The floating-point record forms on PPC don't set the condition register bits
based on a comparison with zero (like the integer record forms do), but rather
based on the exception status bits.
llvm-svn: 181423
As pointed out by Evgeniy Stepanov, assigning a std::string temporary
to a StringRef is not a good idea. Rework MatchRegisterName to avoid
using the .lower routine.
llvm-svn: 181192
PowerPC assemblers are supposed to support a stand-alone '$' symbol
as an alternative of '.' to refer to the current PC. This does not
work in the LLVM assembler parser yet.
To avoid bootstrap failures when using the LLVM assembler as system
assembler, this patch modifies the assembler source code generated
by LLVM to avoid using '$' (and simply use '.' instead).
llvm-svn: 181054
This patch adds a couple of Book II instructions (isync, icbi) to the
PowerPC assembler parser. These are needed when bootstrapping clang
with the integrated assembler forced on, because they are used in
inline asm statements in the code base.
The test case adds the full list of Book II storage control instructions,
including associated extended mnemonics. Again, those that are not yet
supported as marked as FIXME.
llvm-svn: 181052
This patch adds infrastructure to support extended mnemonics in the
PowerPC assembler parser. It adds support specifically for those
extended mnemonics that LLVM will itself generate.
The test case lists *all* extended mnemonics according to the
PowerPC ISA v2.06 Book I, but marks those not yet supported
as FIXME.
llvm-svn: 181051
This adds assembler parser support to the PowerPC back end.
The parser will run for any powerpc-*-* and powerpc64-*-* triples,
but was tested only on 64-bit Linux. The supported syntax is
intended to be compatible with the GNU assembler.
The parser does not yet support all PowerPC instructions, but
it does support anything that is generated by LLVM itself.
There is no support for testing restricted instruction sets yet,
i.e. the parser will always accept any instructions it knows,
no matter what feature flags are given.
Instruction operands will be checked for validity and errors
generated. (Error handling in general could still be improved.)
The patch adds a number of test cases to verify instruction
and operand encodings. The tests currently cover all instructions
from the following PowerPC ISA v2.06 Book I facilities:
Branch, Fixed-point, Floating-Point, and Vector.
Note that a number of these instructions are not yet supported
by the back end; they are marked with FIXME.
A number of follow-on check-ins will add extra features. When
they are all included, LLVM passes all tests (including bootstrap)
when using clang -cc1as as the system assembler.
llvm-svn: 181050
In the default PowerPC assembler syntax, registers are specified simply
by number, so they cannot be distinguished from immediate values (without
looking at the opcode). This means that the default operand matching logic
for the asm parser does not work, and we need to specify custom matchers.
Since those can only be specified with RegisterOperand classes and not
directly on the RegisterClass, all instructions patterns used by the asm
parser need to use a RegisterOperand (instead of a RegisterClass) for
all their register operands.
This patch adds one RegisterOperand for each RegisterClass, using the
same name as the class, just in lower case, and updates all instruction
patterns to use RegisterOperand instead of RegisterClass operands.
llvm-svn: 180611
When testing the asm parser, I noticed wrong encodings for the
above instructions (wrong sub-opcodes).
Tests will be added together with the asm parser.
llvm-svn: 180608
When testing the asm parser, I noticed wrong encodings for the
above instructions (wrong sub-opcodes). Note that apparently
the compiler currently never generates pre-inc instructions
for floating point types for some reason ...
Tests will be added together with the asm parser.
llvm-svn: 180607
When testing the asm parser, I noticed wrong encodings for the
above instructions (wrong operand name in rldimi, wrong form
and sub-opcode for rldcl).
Tests will be added together with the asm parser.
llvm-svn: 180606
When testing the asm parser, I ran into an error when using a conditional
branch to an external symbol (this doesn't occur in compiler-generated
code) due to missing support in PPCELFObjectWriter::getRelocTypeInner.
llvm-svn: 180605
This exposed an issue with PowerPC AltiVec where it appears it was setting the wrong vector boolean contents. The included change
fixes the PowerPC tests, and was OK'd by Hal.
llvm-svn: 180129
The getSwappedPredicate function can be used in other places (such as in
improvements to the PPCCTRLoops pass). Instead of trapping it as a static
function in PPCInstrInfo, move it into PPCPredicates with other
predicate-related things.
No functionality change intended.
llvm-svn: 179926
When matching a compare with a subtract where the arguments of the compare are
swapped w.r.t. the arguments of the subtract, we need to negate the predicates
(or CR bit indices) of the users. This, however, is not the same as inverting
the predicate (negating LT -> GT, but inverting LT -> GE, for example). The ARM
backend seems to do this correctly, but when I adapted the code for the PPC
backend, I introduced an error in this logic.
Comparison optimization is now enabled again by default.
llvm-svn: 179899
Many PPC instructions have a so-called 'record form' which stores to a specific
condition register the result of comparing the result of the instruction with
zero (always as a signed comparison). For integer operations on PPC64, this is
always a 64-bit comparison.
This implementation is derived from the implementation in the ARM backend;
there are some differences because PPC condition registers are allocatable
virtual registers (although the record forms always use a specific one), and we
look for a matching subtraction instruction after the compare (but before the
first use) in addition to before it.
llvm-svn: 179802
A couple of recently introduced conditional branch patterns
also need to be marked as isCodeGenOnly since they cannot
be handled by the asm parser.
No change in generated code.
llvm-svn: 179690
Now that the CR spilling issues have been resolved, we can remove the
unmodeled-side-effect attributes from the comparison instructions (and also
mark them as isCompare). By allowing these, by default, to have unmodeled side
effects, we were hiding problems with CR spilling; but everything seems much
happier now.
llvm-svn: 179502
This fixes an ABI bug for non-Darwin PPC64. For the callee-saved condition
registers, the spill location is specified relative to the stack pointer (SP +
8). However, this is not relative to the SP after the new stack frame is
established, but instead relative to the caller's stack pointer (it is stored
into the linkage area of the parent's stack frame).
So, like with the link register, we don't directly spill the CRs with other
callee-saved registers, but just mark them to be spilled during prologue
generation.
In practice, this reverts r179457 for PPC64 (but leaves it in place for PPC32).
llvm-svn: 179500
Leaving MFCR has having unmodeled side effects is not enough to prevent
unwanted instruction reordering post-RA. We could probably apply a stronger
barrier attribute, but there is a better way: Add all (not just the first) CR
to be spilled as live-in to the entry block, and add all CRs to the MFCR
instruction as implicitly killed.
Unfortunately, I don't have a small test case.
llvm-svn: 179465