To facilitate this, add a new hidden command-line option to disable
the explicit-locals pass. That causes llc to emit invalid code that doesn't
have all locals converted to get_local/set_local, however it simplifies
testwriting in many cases.
llvm-svn: 296540
This is recommit of r287553 after fixing the invalid loop info after eliminating an empty block and unit test failures in AVR and WebAssembly :
Summary: Merging an empty case block into the header block of switch could cause ISel to add COPY instructions in the header of switch, instead of the case block, if the case block is used as an incoming block of a PHI. This could potentially increase dynamic instructions, especially when the switch is in a loop. I added a test case which was reduced from the benchmark I was targetting.
Reviewers: t.p.northover, mcrosier, manmanren, wmi, joerg, davidxl
Subscribers: joerg, qcolombet, danielcdh, hfinkel, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D22696
llvm-svn: 289988
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.
Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.
Issue with early tail-duplication of blocks that branch to a fallthrough
predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283934
This reverts commit r283842.
test/CodeGen/X86/tail-dup-repeat.ll causes and llc crash with our
internal testing. I'll share a link with you.
llvm-svn: 283857
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.
Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.
Issue with early tail-duplication of blocks that branch to a fallthrough
predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283842
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.
Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283619
Per spec changes, this implements block signatures, and adds just enough
logic to produce correct block signatures at the ends of functions.
Differential Revision: https://reviews.llvm.org/D25144
llvm-svn: 283503
Per spec changes, store instructions in WebAssembly no longer have a return
value. Update the instruction descriptions.
Differential Revision: https://reviews.llvm.org/D25122
llvm-svn: 283501
This reverts commit 062ace9764953e9769142c1099281a345f9b6bdc.
Issue with loop info and block removal revealed by polly.
I have a fix for this issue already in another patch, I'll re-roll this
together with that fix, and a test case.
llvm-svn: 283292
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well.
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283274
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
llvm-svn: 283164
The WebAssemly spec removing the return value from store instructions, so
remove the associated optimization from LLVM.
This patch leaves the store instruction operands in place for now, so stores
now always write to "$drop"; these will be removed in a seperate patch.
llvm-svn: 279100
This saves a small amount of code size, and is a first small step toward
passing values on the stack across block boundaries.
Differential Review: http://reviews.llvm.org/D20450
llvm-svn: 270294
Move the register stackification and coloring passes to run very late, after
PEI, tail duplication, and most other passes. This means that all code emitted
and expanded by those passes is now exposed to these passes. This also
eliminates the need for prologue/epilogue code to be manually stackified,
which significantly simplifies the code.
This does require running LiveIntervals a second time. It's useful to think
of these late passes not as late optimization passes, but as a domain-specific
compression algorithm based on knowledge of liveness information. It's used to
compress the code after all conventional optimizations are complete, which is
why it uses LiveIntervals at a phase when actual optimization passes don't
typically need it.
Differential Revision: http://reviews.llvm.org/D20075
llvm-svn: 269012
While we still do want reducible control flow, the RequiresStructuredCFG
flag imposes more strict structure constraints than WebAssembly wants.
Unsetting this flag enables critical edge splitting and tail merging.
Also, disable TailDuplication explicitly, as it doesn't support virtual
registers, and was previously only disabled by the RequiresStructuredCFG
flag.
llvm-svn: 261190
WebAssembly doesn't require full RPO; topological sorting is sufficient and
can preserve more of the MachineBlockPlacement ordering. Unfortunately, this
still depends a lot on heuristics, because while we use the
MachineBlockPlacement ordering as a guide, we can't use it in places where
it isn't topologically ordered. This area will require further attention.
llvm-svn: 260978
Refine the test for whether an instruction is in an expression tree so that
it detects when one tree ends and another begins, so we can place a block
at that point, rather than continuing to find the first instruction not in
a tree at all.
llvm-svn: 259294
This patch revamps the RegStackifier pass with a new tree traversal mechanism,
enabling three major new features:
- Stackification of values with multiple uses, using the result value of set_local
- More aggressive stackification of instructions with side effects
- Reordering operands in commutative instructions to enable more stackification.
llvm-svn: 259009
Instructions can be DCE'd after the RegStackify pass. If the instruction which
would be the pop for what would be a push is removed, don't use a push.
llvm-svn: 258694
Teach the register stackifier to rematerialize constants that have multiple
uses instead of leaving them in registers. In the WebAssembly encoding, it's
the same code size to materialize most constants as it is to read a value
from a register.
llvm-svn: 258142
This patch changes the way labels are referenced. Instead of referencing the
basic-block label name (eg. .LBB0_0), instructions now just have an immediate
which indicates the depth in the control-flow stack to find a label to jump to.
This makes them much closer to what we expect to have in the binary encoding,
and avoids the problem of basic-block label names not being explicit in the
binary encoding.
Also, it terminates blocks and loops with end_block and end_loop instructions,
rather than basic-block label names, for similar reasons.
This will also fix problems where two constructs appear to have the same label,
because we no longer explicitly use labels, so consumers that need labels will
presumably create their own labels, and presumably they won't reuse labels
when they do.
This patch does make the code a little more awkward to read; as a partial
mitigation, this patch also introduces comments showing where the labels are,
and comments on each branch showing where it's branching to.
llvm-svn: 257505
The MC assembler doesn't like using the empty string as a private label
prefix because then it treats all labels as private. This commit reverts
back to the default prefix, which is .L, which is common in ELF targets
and consistent with the LLVM name mangler.
llvm-svn: 257083
The first instruction in a block is what the rend() iterator points to, so
if it moves, we need to re-evaluate rend() so that we continue to iterate
through the rest of the instructions.
llvm-svn: 256953
Move RegStackify after coalescing and teach it to use LiveIntervals instead
of depending on SSA form. This avoids a problem where a register in a COPY
instruction is stackified and then subsequently coalesced with a register
that is not stackified.
This also puts it after the scheduler, which allows us to simplify the
EXPR_STACK constraint, as we no longer have instructions being reordered
after stackification and before coloring.
llvm-svn: 256402
Implement a new BLOCK scope placement algorithm which better handles
early-return blocks and early exists from nested scopes.
Differential Revision: http://reviews.llvm.org/D15368
llvm-svn: 255564
This patch introduces a codegen-only instruction currently named br_unless,
which makes it convenient to implement ReverseBranchCondition and re-enable
the MachineBlockPlacement pass. Then in a late pass, it lowers br_unless
back into br_if.
Differential Revision: http://reviews.llvm.org/D14995
llvm-svn: 254826
This is just prototype for load/store for i32 types. I'll add them to
the rest of the types if we like this direction.
Differential Revision: http://reviews.llvm.org/D15197
llvm-svn: 254807
This distinguishes input operands from output operands. This is something of
a syntactic experiment to see whether the mild amount of clutter this adds is
outweighed by the extra information it conveys to the reader.
llvm-svn: 253922